LhARA Science Consultation Plan

Professor Amato Giaccia University of Oxford E-mail: <u>amato.giaccia@oncology.ox.ac.uk</u>

> Professor Jason Parsons University of Birmingham E-mail: jparsons.3@bham.ac.uk

The Evolution of Technology to Increase Therapeutic Index

Radiobiological Research Directions for LhARA

- Characterising the key biophysical characteristics of laser-driven ions compared to conventional ions by interrogating the response of different models. Specially those enriched in stem-cell populations.
- Assessing the impact of oxygenation levels on DNA damage and immune responses in response to different temporal and spatial patterns.
- Identify the impact of genetic mutations where ion beams would be effective.
- Test the impact ultra-high dose-rate and spatially delivered ions on cell killing using in vivo mouse models and probe the impact of clinically relevant fractionation schedules.

Detailed Radiobiological Characterisation of the 60 MeV Cyclotron at the Clatterbridge Cancer Centre P2P3-P7

Cell survival and DNA damage/repair data will now be compared to the profile acquired using the MC40 cyclotron in Birmingham

Aiyappa-Maudsley et al., (Unpublished)

Carbon lons are More Effective In Killing Cancer Stem Cells

In vitro clonogenic survival

In vivo growth by beam type and dose

Genetic Pathways Potentially Benefiting from LhARA Nrf2-Keap1 Pathway

KEAP1/NRF2 Mutation Status Predicts Local Failure after **Radiotherapy in Human NSCLC**

Α

D

4								В	<u>-</u>	- Wild-type	Initial cohort	С	
					Wild-type (n = 33)	KEAP1/NRF2 mutant (n = 9	P g		- KEAP1/NRF2 mutant	- All Stages	e 1.0	Stage Wild-type KEAP1/NRF2 mutant	
Sex				М	9 (27%)	5 (56%)	0.23	failu	0.8			ailur 8	
Median	age	vears (range)	F 7	24 (73%) 0 (42–91)	4 (44%)	0.45	cal				al f	
Median	follow	v-up, m	io. (rang	le) 2	24 (6-53)	25 (7-63)	0.47	f lo	9			loc	
Histolog	уу			scc	5 (15%)	1 (11%)	0.85	ce o	•]	_		e of 0.6	
			A	Other	25 (76%)	7 (78%)		den				ance	
Stage				I :	22 (67%)	5 (56%)	0.54	ncic	4	Г		aide 4	
					6 (18%)	1 (11%)		ve ir	8			o.o.	
Median	tumo	r volum	າຍ		5 (15%)	3 (33%)	0.48	lativ				ttive	
mL (rar	ige)	a volun	10,	((0.8-569.8)	(1.0-218.5)	0.40	nm	0.2			ula 0.2	
Radiati	on typ	e	5	SABR	25 (76%)	6 (67%)	0.68	Cu				m	
Chemo	therar	ov	(JFRI Ves	8 (24%)	3 (33%)	0.66				D 0.000	0	
onemo	unorap	<i></i>		No	26 (79%)	6 (67%)	0.00		ö 1		P = 0.008	0.0	P < 0.04
)				KEA	P1 mutatio	ne	E Status		Bad	CR	LF	F 。	
Patient	Age	Sex	Stage	Tumor variant	ctDNA Treatmen variant (%AF) Month		t	carbo/	paclitaxel	13	ll failure 0.8 1.	Wild-type Validation cohort KEAP1 mutant – All stages	
T1	56	F	IIIB	M503I	M503I (3	3.38%)		R.			Q.Q.P	loca	
T2	56	F	IIIB	R483C	R483C (0.44%)		Stag	e IIIB		T1	0.6	
T11	46	F	IIA	Wild-typ	e Wild-	type	plas		*			cider 4	
T13	81	F	IB	Wild-typ	e Wild-	type	10 Ju					ve in	
T14	78	М	IB	Wild-typ	e Wild-	type	Э Э Э Э Э Э Э Э					ulativ 2	
		E	IIIA		IAPLA		5					E O	
T23	51	8		Wild-typ	e wiid-	type	ĔŢ					0	
T23 T35	51 48	F	IIIB	Wild-typ	e wild- e Wild-	type	Ĕ ₀ ∃		0	4	13	0.0 -	<i>P</i> = 0.02
T23 T35	51 48	F	IIIB	Wild-typ	e Wild- e Wild-	type	Tume	A KE	0 AP1 M503I	Time (months)	13 ▲ TP53 R283P	0.0 -	P = 0.02 0 6 12 18

Youngtae Jeong et al. Cancer Discov 2017;7:86-101

Immune Effects of RT

After RT:

- DNA damage results in genome instability and an increase in cytosolic DNA
- Cytosolic DNA can activate the cGAS/STING pathway which results in the transcription of type l interferons

Lhuillier et al. Genome Medicine (2019) Lhuillier et al. J Clin Invest (2021)

Analysis of Proteomic Changes after RT

Tailor et al, 2022

Changes in Immunopeptidome after RT

A Doubling of Peptides Bound to MHC after RT

Tailor et al, 2022

Example of a Unique Radiation Induced Peptide

Ε

Tailor et al, 2022

The Relationships of RBE and OER vs LET.

Desouky and Zhou, 2015

Survival of Cells Irradiated with Carbon Ions in Oxic (red curves) and Hypoxic conditions (blue curves) for Two Different LETs

Combining LhARA Ion Therapy with Immune Checkpoint Inhibitors

Response to Proton Minibeam Irradiation

Br J Radiol. 2020 Mar; 93(1107)

"Relatively" high-LET protons cause a decrease in GBM cell survival due to CDD formation compared to low-LET protons

Aiyappa-Maudsley, Chalmers et al., (Unpublished)

Summary

Technical advantages of the LhARA facility

- Provides a reproducible, stable and reliable beam critical for acquiring accurate radiobiological data, and for performing systematic evaluations of the biological response.
- Beam which is flexible, easily accessible, and potentially high throughput (unlike clinical facilities).
- Ions can be delivered in very short pulses (10-40 ns) and high repetition rates.
- Ability to deliver particle ions at different energies/LET (protons at 15 and 125 MeV; carbon ions at 30 MeV) and at different dose rates (e.g. FLASH).
- In vitro and in vivo end-stations both for routine cell culture experiments (with automated handling in controlled environments), but also animal irradiations.
- Stimulate the analysis of more complex biological end-points.
- Potential for live cell imaging, rather than single end-point measurements.

Superior Dose Depth Distribution & Physical Beam Characteristics

-Higher LET -Superior RBE -Low OER -Narrow penumbra

Physics

Beam characterization
 Beam heterogeneity

Radiobiological Research

-Microenvironment

-CSCs

Engineering

-Gantry design -Miniaturization

Material Science

-Target Production -Substance lighter than concrete, but just as effective

Increasing the Patient Experience

-New Lhara Ion therapy
-Less toxicity
-Given in short period of time
-Cost effectiveness research

Clinical Biology Research

-Dose limitations

-Toxicity

-Which tumor histologies benefit most
-Does it overcome tumor microenvironment
-Development of new clinical trial design

Clinical Physics Research

-Dose and treatment planning -Development of IMCT -Absorbed Dose Calculations -Modeling RBE

STFC/UKRI/ITRF

Beam Production
 Beam Delivery
 Accelerator miniaturization
 Active and Passive Beam Shaping

Imaging -Ionacoustic Imaging -Positron imaging -Dose distribution

Multidisciplinary

UK

LhARA- Ion

Therapy

Program