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1 Equations of Motion
Based on the setup of the Gabor lens, an electron plasma can be confined in the lens. A mag-
netic field which lies along the longitudinal direction (i.e. Bẑ) confines the plasma transversely,
while the cylindrical electrode system creates a potential well confining the plasma along the
longitudinal direction.

The trajectory of an electron entering such a setup can be determined by a balance of forces
given by the Lorentz force:

me
dv

dt
= −e (E + v ×B) (1)

where me is the electron mass, v is the electron velocity, e is the magnitude of the electron
charge, E is the electric field, and B is the magnetic field. Writing out the components we get:

me
dvx
dt = −e× (Ex + (vyBz − vzBy))

me
dvy
dt = −e× (Ey − (vxBz − vzBx))

me
dvz

dt = −e× (Ez + (vxBy − vyBx))

We can rewrite this using the Newtonian dot notation, (i.e. ẋ = dx
dt = vx):

meẍ = −e× (Ex + (ẏBz − żBy))
meÿ = −e× (Ey − (ẋBz − żBx))
mez̈ = −e× (Ez + (ẋBy − ẏBx))

(2)

It is due to the coupling between the system of equations that makes finding an analytical
solution extremely complicated. Using Mathematica we can try to determine a trajectory either
analytically (if possible) or numerically. However, we first need to ensure that the results obtained
match with those given by the theory which assumed cylindrical symmetry before playing around
with these equation. The main unknown in this equation is the electric field which comes about
as a property of the plasma and the anode. Rather than attempt to explain everything in terms
of Cartesian coordinates where an analytical solution is extremely complex, it is easiest to work
in cylindrical coordinates. I’ll explain in Section 6 a more ‘general’ way to do this in Cartesian
coordinates, which is the approach the code aims to achieve.
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2 Cylindrical Symmetry
2.1 Assumptions
Based on the Gabor lens setup, when we assume cylindrical symmetry we can impose the assump-
tions of applying a homogeneous magnetic field symmetrically along the longitudinal direction
and for the plasma to only affect particles in the radial direction:

Radial Electric Field : E = Er(r)

Axially-Symmetric Magnetic Field : B = Bz

Recall that the cylindrical coordinate system are given as:

x =r cos(ϕ)

y =r sin(ϕ)

z =z

Hence, this essentially means that we can set Bx = By = 0, and Ez = 0:

meẍ = −e× (Ex + ẏBz)
meÿ = −e× (Ey − ẋBz)
mez̈ = 0

(3)

2.2 Electric Field
We wish to determine the electric field. To do so, we assume a cold and homogeneously dis-
tributed electron plasma in the cylindrical region with no neutralizing ion background. We
proceed by making use of Gauss’s Law to get the electric space charge field. The electric field in
an infinite cylinder of uniform charge points radially outwards with an electric flux Φ:

Φ = E(2πrL) =
Q′

ϵ0

where we assume a cylinder of length L, with radius r, enclosed charge by the Gaussian surface
of Q′, and vacuum permittivity ϵ0. A Gaussian surface encloses less than the total charge, which
we relate to the total charge by:

Q′

Q
=

πr2L

πR2L
⇒ Q′ = Q

r2

R2

with R being the radius from the center of cylinder to the surface. We can substitute this result
into our flux to get:

Φ = E(2πrL) =
Qr2

ϵ0R2
⇒ E =

Qr

ϵ02πR2L

Since the volume of the cylinder is given by πR2L, we can express the electric field E in terms
of the electron number density ne by letting Q

πR2L = −ene:

E = −nee

2ϵ0
r = Er (4)
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This is in terms of the radial coordinate, if we want to express this in Cartesian coordinates then
we consider:

r̂ = cos(ϕ)x̂+ sin(ϕ)ŷ and ϕ = arcsin
(y
r

)
= arcsin

(
y√

x2 + y2

)
(5)

Hence,

Err̂ =Er (cos(ϕ)x̂+ sin(ϕ)ŷ)

=Er

(
cos
[
arcsin

(y
r

)]
x̂+ sin

[
arcsin

(y
r

)]
ŷ
)

=Er

√
1− y2

x2 + y2
x̂+ Er

y

r
ŷ

=Er

(x
r
x̂+

y

r
ŷ
)

This shows that in terms of the Cartesian coordinates, the radial electric field is expressed
as:

Ex = −nee

2ϵ0
x (6)

Ey = −nee

2ϵ0
y (7)

To summarize, by making some assumptions about the plasma we determined the electric
field radially, and converted it to Cartesian units. Hence, we can update our system of equations:

meẍ = −e×
(
−nee

2ϵ0
x+ ẏBz

)
meÿ = −e×

(
−nee

2ϵ0
y − ẋBz

)
mez̈ = 0

(8)

We have most of what we need, what remains is to determine the electron density for the
confinement of the electron plasma in the Gabor lens. One thing to note here is that for the
equation of motion for the z-axis, we see that it says that electrons would stream out of the lends
longitudinally (because we stated Bx = By = Ez = 0). As mentioned at the start, we confine the
plasma longitudinally by adding the ground electrodes which create a potential well to trap the
electron plasma. Thus, the longitudinal equation of motion will need to be modified to include
this. This will be discussed in Sec. 4.
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3 Radial Confinement
We now wish to determine the maximum electron density that can be confined in the radial
direction. As the plasma column rotates about the axis of symmetry of the lens, different forces
will act on the electron. In the radial direction, the balance of forces is given by:

−mevϕ
2

r
= −eEr − evϕBz (9)

Recalling the argument from above, the radial electric field is given by Eq. 4, re-expressed
as:

Er = −nee

2ϵ0
r = −me

2e
ωp

2r

where we used the definition for the plasma frequency as ωp =
√

nee2

ϵ0me
. In addition, we will also

introduce the angular velocity defined as ωe =
vϕ

r such that we rewrite Eq. 9 as:

−mevϕωe =
me

2
ωp

2r − eωerBz

ωe
2 =− ωp

2

2
+ ωeΩe

where we used the definition of the electron cyclotron frequency Ωe = eBz

me
. Next applying the

quadratic formula will give the solution for ωe as:

ω±
e =

Ωe

2

[
1±

√
1− 2ωp

2

Ωe
2

]
(10)

This result states that there are 2 possible mean rotation velocities for the plasma column.
The Brillouin flow limit is the high density limit where these two solutions coalesce. As can be
easily seen, this occurs when: 2ωp

2 = Ωe
2, such that ωe = Ωe

2 . This refers to a rigid rotation of
the plasma column with an angular velocity Ωe

2 .
A reminder is that we want to find the maximal electron density such that the plasma is still

confined radially. So we need to relate this result to the electron number density. We have found
the condition on ωp for the Brillouin flow limit, hence:

ωp
2 =

nee
2

ϵ0me

Ωe
2

2
=

nee
2

ϵ0me

e2Bz
2

2me
2

=
nee

2

ϵ0me

ne,r,max =
ϵ0Bz

2

2me
(11)
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3.1 Visualization
It is useful to be able to visualize the Brillouin flow limit and how it will affect the trajectory of
an electron. The equations of motion were solved and plotted with Mathematica. Fig. 1 shows
the trajectory for an electron starting at the middle of the lens (0, 0, l

2 ) (defining z = 0 to be at
the entrance of the lens with length ℓ = 500×10−3 m) with a velocity of 1 eV in the x-direction,
at 0.9 × “Brillouin Flow Limit”, and a magnetic field of Bz = 0.008 T. As can be seen, the
electron appears to be radially confined, tracing out a circular region. Fig. 2 shows an electron
with the same parameters as in Fig. 1 but beginning at an initial position of (0.007 m, 0, ℓ

2 ). As
can be seen, the electron traces out an annular-like region, never reaching a centre region. Fig. 3
has the electron beginning at (0, 0, ℓ

2 ) but with velocity instead in the y-direction at 20 eV. This
slightly affected the trajectory at the start but at later time steps stills fills out a circular area,
albeit, encircling a larger region.

Figure 1: Parametric plots of the radial trajectory of an electron initially at (0, 0, ℓ
2 ) with velocity

of (1 eV, 0, 0) encountering a plasma at an electron density of 0.9× Brillouin Flow Limit, and a
longitudinal magnetic field Bz = 0.008 T. The red point represents the initial position of electron
at t = 0 and the blue point shows the electron at the final position at a given time t.
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Figure 2: Parametric plots of the radial trajectory of an electron initially at (0.007 m, 0, ℓ
2 ) with

velocity of (1 eV, 0, 0) encountering a plasma at an electron density of 0.9×Brillouin Flow Limit,
and a longitudinal magnetic field Bz = 0.008 T. The red point represents the initial position of
electron at t = 0 and the blue point shows the electron at the final position at a given time t.

8



CCAP–TN–ACCL–01

Figure 3: Parametric plots of the radial trajectory of an electron initially at (0, 0, ℓ
2 ) with velocity

of (0, 20 eV, 0) encountering a plasma at an electron density of 0.9 × Brillouin Flow Limit, and
a longitudinal magnetic field Bz = 0.008 T. The red point represents the initial position of
electron at t = 0 and the blue point shows the electron at the final position at a given time t.
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Now, if we look at the electron trajectory when we are at about the Brillouin flow limit as given
by Fig. 4 with an electron with the same parameters as in Fig. 1 except for the electron density,
we see that the electron no longer traces out a set area. Instead, the trajectory indicates that
the electron spirals outwards, indicating that it is no longer being confined radially. If we assume
some lens parameters, such as an anode radius of 35× 10−3 m and a length of 500× 10−3 m, the
final plot at t = 5.89716×10−8 is the point at which the electron touches the lens at which point
the code stops. It should be mentioned the slight gap between the blue point and the trajectory
is due to a Mathematica plotting issue, and can be ignored.

Figure 4: Parametric plots of the radial trajectory of an electron initially at (0, 0, ℓ
2 ) with velocity

of (1 eV, 0, 0) encountering a plasma at an electron density at the Brillouin Flow Limit, and a
longitudinal magnetic field Bz = 0.008 T. The red point represents the initial position of electron
at t = 0 and the blue point shows the electron at the final position at a given time t.
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Finally, Fig. 5 shows an electron with the same parameters as Fig. 1, except we at an electron
density of 1.1× “Brillouin Flow Limit”. The electron quickly spirals outwards and is completely
lost, i.e. is not confined radially.

Figure 5: Parametric plots of the radial trajectory of an electron initially at (0, 0, ℓ
2 ) with velocity

of (1 eV, 0, 0) encountering a plasma at an electron density of 1.1× Brillouin Flow Limit, and a
longitudinal magnetic field Bz = 0.008 T. The red point represents the initial position of electron
at t = 0 and the blue point shows the electron at the final position at a given time t.
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4 Longitudinal Confinement
As stated earlier, the set of differential equations given by Eq. 8 does not contain any longitudinal
confining conditions. Electrons would just stream through the lens if not for the potential well
setup by the cylindrical electrode system.

However, the confined electron plasma will decrease the positive potential of the anode. We
can obtain the maximum confinement when the space charge potential of the electron plasma
matches that of the anode potential. If we ignore the endcap electrodes constraining the maximal
radius of the plasma we can obtain a simple expression for the maximum longitudinal electron
number density.

4.1 ‘Ideal’ Plasma Potential
As usual, we will consider a cold, homogeneously distributed plasma column. The potential of
the electron plasma is given by:

Vp(r) = −
∫

E(r)dr = −
∫ (

−nee

2ϵ0
r

)
dr =

nee

4ϵ0
r2

Evaluating this integral from 0 to the boundary, i.e. the radius RA of the anode then:

Vp(RA) =
neeRA

2

4ϵ0

We get the maximum confinement when the electron plasma equals the anode potential at
r = RA, such that the potential drops to zero and electrons will begin to no longer be confined,
i.e. (Vp(RA) = VA):

ne,l,max =
4ϵ0VA

eRA
2 (12)

This gives the maximal confinement electron density condition for the longitudinal direction,
but we need to determine the potential of the anode. As a side note, the overall potential would
then be when we subtract from the potential of the anode the potential of the plasma (i.e.
V = VA − Vp).

4.2 Anode Potential - Analytical Solution
To obtain the anode potential, it requires solving Laplace’s equation. We will assume the anode
in the Gabor lens to be a hollow right circular cylinder. We will let it have a radius RA and have
its axis on the z-axis to range from z = 0 to z = ℓ. The potential on the end faces will be assumed
to be zero, corresponding to the ground electrodes, while the potential on the cylindrical surface
is given to be a constant V0.

Boundary Conditions

Reiterating the boundary conditions in mathematical notation, with the potential given by V :

V (r, ϕ, 0) = 0 (13)
V (r, ϕ, ℓ) = 0 (14)

V (RA, ϕ, z) = V0 (15)
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Laplace’s Equation in Cylindrical Coordinates

∇2V =
1

r

∂

∂r

(
r
∂V

∂r

)
+

1

r2
∂2V

∂ϕ2
+

∂2V

∂z2
= 0 (16)

The standard approach is to use the separation of variables technique to find the solution,
such that we assume V (r, ϕ, z) = R(r)Φ(ϕ)Z(z). Hence proceeding from Eq. 16,

Φ(ϕ)Z(z)

r

∂

∂r

(
r
∂R(r)

∂r

)
+

R(r)Z(z)

r2
∂2Φ(ϕ)

∂ϕ2
+R(r)Φ(ϕ)

∂2Z(z)

∂z2
= 0

1

rR(r)

∂R(r)

∂r
+

1

R(r)

∂2R(r)

∂r2
+

1

r2Φ(ϕ)

∂2Φ(ϕ)

∂ϕ2
+

1

Z(z)

∂2Z(z)

∂z2
= 0

By bearing in mind that ϕ = ϕ + 2π and contemplating the solution that satisfies this, we
obtain Φ(ϕ) through solving:

1

r2
∂2Φ(ϕ)

∂ϕ2
= −ν2

r2
Φ(ϕ) (17)

where ν is an integer. The general solution is given by:

Φ(ϕ) = A sin(νϕ) +B cos(νϕ) (18)

where A and B are constants. Next due to considerations of the boundary conditions of Eq.
13 and Eq. 14 which we need to satisfy, we obtain Z(z) through solving:

∂2Z(z)

∂z2
= −k2Z(z) (19)

where k is an integer. The general solution is given by:

Z(z) = C sin(kz) +D cos(kz) (20)

where C and D are constants. As a result of what we imposed in Eq. 17 and Eq. 19, the radial
portion is given by:

∂2R(r)

∂r2
+

1

r

∂R(r)

∂r
=

(
k2 +

ν2

r2

)
(21)

The general solution is hence given by:

R(r) = EIν(kr) + FKν(kr) (22)

where E and F are constants and Iν(kr) is the modified Bessel function of the first kind, and
Kν(kr) is the modified Bessel function of the second kind. So in general, the solution of Laplace’s
equation in cylindrical coordinates would be a superposition of terms of the form:

V (r, ϕ, z) =R(r)Φ(ϕ)Z(z)

=

∞∑
ν=0

[EνIν(kr) + FνKν(kr)] [Aν sin(νϕ) +Bν cos(νϕ)] [Cν sin(kz) +Dν cos(kz)]

13
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We will now impose the boundary conditions into this general equation. From Eq. 13 where
V (r, ϕ, 0) = 0 we must have Dν = 0. Further, Eq. 14 will imply that:

Z(ℓ) = C sin(kℓ) = 0

for this to be satisfied we would require:

kℓ = nπ ⇒ kn =
nπ

ℓ
, n = 1, 2, 3, . . .

Next the plots giving the modified Bessel functions are given below in Fig. 6:

Figure 6: Plots of the modified Bessel functions of the first kind (left) and of the second
kind(right).

For the cylindrical anode there is no charge at the origin, such that we expect a finite solution
when r → 0. By looking at the modified Bessel functions, we must necessarily impose that
Fν = 0. Hence, we have simplified the solution to the form below where we will also combine
the integration constants:

V (r, ϕ, z) =

∞∑
n=1

∞∑
ν=0

[Anν sin(νϕ) +Bnν cos(νϕ)] sin(knz)Iν(knr)

We next impose the last boundary condition Eq. 15:

V (RA, ϕ, z) = V0 =

∞∑
n=1

∞∑
ν=0

[Anν sin(νϕ) +Bnν cos(νϕ)] sin(knz)Iν(knRA)

We will multiply both sides of the equation by sin(kn′z) and integrate with respect to z.

∫ L

0

V0 sin(kn′z)dz =

∞∑
n=1

∞∑
ν=0

[Anν sin(νϕ) +Bnν cos(νϕ)] Iν(knRA)

∫ L

0

sin(knz) sin(kn′z)dz

−V0
cos(kn′z)

kn′

∣∣∣∣L
0

=

∞∑
n=1

∞∑
ν=0

[Anν sin(νϕ) +Bnν cos(νϕ)] Iν(knRA)

(
L

2
δnn′

)

−V0ℓ

n′π
[cos(n′π)− 1] =

ℓ

2

∞∑
n′=1

∞∑
ν=0

[An′ν sin(νϕ) +Bn′ν cos(νϕ)] Iν(kn′RA)
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We make note that cos(n′π) = (−1)n
′ , such that for even n′ we get zero. Hence, by relabeling

n = n′ and for odd n:

2V0ℓ

nπ
=
ℓ

2

∞∑
n=odd

∞∑
ν=0

[Anν sin(νϕ) +Bnν cos(νϕ)] Iν(knRA)

Finally we note how the LHS contains no sin(νϕ) or cos(νϕ) terms. This would imply that
ν = 0, which means Anν = 0. Which then means:

Bn0 =
4V0

nπ

1

I0(knRA)

We finally have the solution:

V (r, ϕ, z) =
4V0

π

∞∑
n=odd

1

n

sin(knz)I0(knr)

I0(knRA)
(23)

To visually see this solution we will input some test values. We will let V0 = 630 V, RA =
0.035 m, ℓ = 0.5 m. In addition, the sum is to infinity, but we can’t realistically do such an
infinite sum except for certain values of the radius, For illustrative purposes we will sum 50 odd
n terms. This is given in Fig. 7, where in the plot on the right we see some oscillations near the
edges, which is a result of not summing to infinity. In theory it should be a perfect straight line
with an immediate drop to 0 at the ends of the lens.

Figure 7: Plot of the potential against the longitudinal z as given by the analytical solution for
a constant radius at r = 0 (left), r = RA

2 (middle) and r = RA(right). The plots sum up to 50
odd n terms.

4.3 Longitudinal Trajectory
All we need to do is to subtract the calculated Anode potential with the plasma potential to
get the overall potential. We then take the negative derivative with respect to the z-direction to
get the electric field in the z-direction. Substituting this result to the equation of motion in the
longitudinal direction would give the motion of the electron.

Giving a sketch of this mathematically, our overall potential is:

V (r, z) = VA(r, z)− Vp(r)

We can then obtain the electric field longitudinally as:

Ez(r, z) = −∂V (r, z)

∂z

15



CCAP–TN–ACCL–01

We plug this into the equation of motion from Eq. 2:

mez̈ =− e×
(
−∂V (r, z)

∂z
+ (ẋBy − ẏBx)

)
=e× ∂V (r, z)

∂z

where we will continue with the assumption of having a perfectly longitudinal magnetic field. It
is worth noting here that the electric field only depends on how the anode potential varies along
the longitudinal direction as we assumed a cold homogeneous plasma. The plasma potential
is essentially a constant along the z-direction. But it is important to consider the sign of the
potential, as when we fill the lens with more electrons than our found confinement condition, then
the electric field’s sign should be switched to reflect the fact that electrons should be expelled
rather than be confined. Fig. 8 shows the longitudinal electric field resulting from the anode.

Figure 8: Plots of the longitudinal electric field when taking the derivative of the anode potential.
The picture of the left shows the electric field at a constant r = 0, the middle at r = RA

2
and the right at r = RA.

To get an idea of the electron motion longitudinally we can plug in some values. We will
start with an electron with an initial position (0, 0, ℓ

2 ), with velocity (0, 0, 10−4 MeV), with the
same values given as in the radial confinement case at 0.9×Brillouin Flow Limit. This is shown
in

Figure 9: Longitudinal motion at 0.9 × Brillouin Flow Limit at an initial position of (0, 0, ℓ
2 )

and initial velocity (0, 0, 10−4 MeV). Where we set ℓ = 0.5 m, RA = 35 × 10−3 m, V = 630 V,
Bz = 0.008 T.

16
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4.4 Plasma Potential Modification due to Endcaps
There may be some loss between the anode and the ground electrode which will have the effect of
lowering the maximum radial expansion of the plasma (Rp) to the radius of the ground electrode.
If we wanted to include such an effect we would have to use another definition for our plasma
potential.

At r < Rp the potential proceeds as in the earlier consideration:

Vr,in(r) = −
∫

E(r)dr =
ener

2

4ϵ0
+ C1

where C1 represents an integration constant. While for r > Rp:

Vr,out(r) = −
∫ (

−eneRp
2

2ϵ0r

)
dr =

eneRp
2

2ϵ0
ln(r) + C2

where C2 is an integration constant. At r = RA the potential should be equal to that of the
anode:

VA =
eneRp

2

2ϵ0
ln(RA) + C2 ⇒ C2 = VA − eneRp

2

2ϵ0
ln(RA)

giving the overall expression:

Vr,out(r) = VA − eneRp
2

2ϵ0
ln

(
RA

r

)
Next at r = Rp we expect the potential to match (i.e. Vr,in(Rp) = Vr,out(Rp):

eneRp
2

4ϵ0
+ C1 = VA − eneRp

2

2ϵ0
ln

(
RA

Rp

)

⇒ C1 = VA − eneRp
2

2ϵ0
ln

(
RA

Rp

)
− eneRp

2

4ϵ0

Putting this together, we get for the potential of the plasma:

Vr,in(r) = VA − ene

4ϵ0

(
Rp

2 − r2
)
− eneRp

2

2ϵ0
ln

(
RA

Rp

)
(24)

To get the condition for maximal longitudinal confinement we use the fact that Vr,in(0) = 0:

0 =VA − ene

4ϵ0
Rp

2 − eneRp
2

2ϵ0
ln

(
RA

Rp

)
=VA − eneRp

2

4ϵ0

(
1 + 2 ln

(
RA

Rp

))

ne =
4ϵ0VA

eRp
2
(
1 + 2 ln

(
RA

Rp

)) (25)

As a sanity check, if we set Rp = RA, we get back to what we previously found. The code
won’t assume this modification.
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5 Gabor Lens Focusing
We assume that the electron plasma provides a radial focusing force, i.e. Fr = qEr. We are
interested in how the proton beam would be focused by this electron cloud, so the trajectory of
an ion is given by:

mir̈ = qEr (26)

where mi is the mass of the ion and q its charge, r the radial position of the ion, and Er the radial
electric field which again is defined from Eq. 4. Since our interest is in the focusing per unit
length instead of time we need to do a change of variables. For an ion moving with a constant
longitudinal velocity vi, the path length is given by z = vit.

r′ =
dr

dz
=

dr

dt

dt

dz
= ṙ

dt

dz
= ṙ

(
1

vi

)
r′′ =

dr′

dz
=

dr′

dt

dt

dz
= r̈

(
1

vi2

)
+

ṙ

vi

[
d

dt

(
1

vi

)]
︸ ︷︷ ︸

⇒0

So this change of variables makes the equation of motion become:

mi

(
r′′vi

2
)
=− q

nee

2ϵ0
r

r′′ + q
nee

2vi2miϵ0︸ ︷︷ ︸
−kG

2

r = 0

Under the thin lens approximation (kG ℓ < π
2 ) we can obtain the focal length by: f−1 = kG

2ℓ,
where ℓ is the length of the lens, such that:

1

fG
=− qeneℓ

2mivi2ϵ0
=

eneℓ

4ϵ0U

fG =
4ϵ0U

eneℓ
(27)

where we define the total accelerating potential of the ion as U = − 1
2
mivi

2

q . If we are not working
in the thin lens limit then the focal length is instead given by:

fG =
1

kG sin(kGℓ)
(28)

5.1 Visualization
Following the arguments made to obtain the focal length of the Gabor lens, it is best to see this
visually to check that what we have done makes sense. We choose a magnetic field Bz = 0.008 T,
which leads to a electron number density at the Brillouin flow limit of ne ∼ 3.10867×1014 electrons

m3 .
We will set the Gabor lens to be of length ℓ = 500 × 10−3 m, and for the proton to be moving
in the longitudinal direction with a constant velocity corresponding to 1 MeV. We will also

18



CCAP–TN–ACCL–01

Figure 10: A plot of a proton initially at (3× 10−3 m, 0, 0) at t = 0 at the entrance to the Gabor
lens with a magnetic field Bz = 0.008 T, length ℓ = 0.5 m, and with an electron density at the
Brillouin flow limit. The resulting trajectory in the x-direction of the proton is plotted against
time, with the vertical line indicating when the proton leaves the Gabor lens with the subsequent
change in the trajectory (occurs at t ∼ 3.61 × 10−8 s). The plot ends at the time predicted to
correspond to when the proton reaches focal length of the lens at t ∼ 1.09× 10−7 s.

initially place the proton at the entrance of the lens at position: (3× 10−3 m, 0, 0), such that we
have slightly displaced the proton in the x-direction from the optimal center in order to observe
focusing.

If we substitute the values into Eq. 28, it will give the focal length to be at about 1.51 m in
the longitudinal direction. To check this, we let Mathematica numerically solve the differential
equations and work out the velocity and position of the proton when it exits the Gabor lens
at z = 500 × 10−3 m. The proton will then continue moving longitudinally. However, in the
x-direction, it will now move with a constant velocity. The resulting trajectory for the x-position
of the proton is given in Fig. 10. We have plotted the x-position against time. The plot stops at
the time which corresponds to the predicted focal length (i.e. t ∼ 1.09× 10−7 s). Based on the
resulting plot, it gives a reasonable result which appears to agree with what the theory suggests,
allowing for some deviations due to the numerical integration performed.
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6 Additional Clarification
6.1 General Method and Cylindrical Symmetry
To explain the theory I assumed a cylindrical symmetry quite early on. This is a bit contrary to
the purpose of the code which is to try to get the motion without such an early assumption. The
trouble in working purely in Cartesian coordinates is due to the electric field. As a reminder we
assumed throughout the plasma is cold and homogeneous such that it would only act radially
and by using Gauss’s law we implicitly assume an infinitely long cylinder. To avoid doing so, we
can instead work by using the solution to Poisson’s equation to get the potential of the plasma.

∇2Vp = − ρ

ϵ0
(29)

Writing this out in Cartesian coordinates:

∂2Vp

∂x2
+

∂2Vp

∂y2
+

∂2Vp

∂z2
=

ene

ϵ0

while in Cylindrical coordinates:

1

r

∂

∂r

(
r
∂Vp

∂r

)
+

1

r2
∂2Vp

∂ϕ2
+

∂2Vp

∂z2
=

ene

ϵ0

The problem then essentially comes down to applying the correct boundary conditions ap-
propriate to the situation to get the appropriate plasma potential. It is reassuring that if we plug
in what we previously found for Vp, it will satisfy Poisson’s equation. So everything mentioned
above still holds.

If we were to work with absolutely no consideration for cylindrical symmetry, it seems we
would have to solve Laplace’s equation for the anode potential, and solve Poisson’s equation for
the plasma potential. From those potentials, we would obtain the electric fields which we can
substitute into Eq. 2.

6.2 Anode Potential Effect Radially
It may be noticed that when we considered the radial effects we did not include any consideration
for the anode. It is worth seeing what effect the anode potential will have on the radial direction.
Fig. 11 gives the electric field along the x-direction from the anode potential alone and the
electron cloud plasma alone. The plots were plotted using the same parameters that have been
used throughout. As can be seen, the effects of the anode can essentially be ignored assuming a
high enough electron density. The plots of the anode contain some structure which comes from
the numerical method to obtain the anode potential which may be ignored.
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Figure 11: Plot of the electric field along the x-direction plotted against the x-coordinate. Due
to symmetry we would get similar plots for the y-direction. The three plots above are the
electric fields resulting from the anode alone, and the bottom plots resulting from the electron
cloud alone. This is where the electron density is at 0.9 × Brillouin Flow Limit, ℓ = 0.5 m,
RA = 35× 10−3 m, V = 630 V, Bz = 0.008 T. The structure in the top plots can be attributed
to the numerical method used to obtain the anode potential.
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7 Mathematica Code
7.1 Implementation
The current state of the code is to be able to reproduce the results of the theory which assumes
cylindrical symmetry, but does so through Cartesian coordinates. In theory, my changing the
boundary conditions for the potentials, it should be possible to get some general results without
such symmetry.

The basic implementation of the code can be summarised as:

1. State the lens parameters, applied magnetic field, and the electron number density.

2. Solve Laplace’s equation numerically to get the anode potential with appropriate boundary
conditions.

3. Solve Poisson’s equation with the chosen electron density to get the potential from the
plasma with appropriate boundary conditions.

4. Take the derivative of the potentials to get the electric fields in the x, y, z-directions.

5. Substitute these into the equations of motion and solve for motion in the x, y, and z-
direction.

7.2 Running the code
The code has been labeled with sections and some functions have comments to explain the
functions. Some detail and how to run the code will be explained. But the whole notebook can
be run as is and some default results will be given regardless.

7.2.1 Convenience Functions

These functions are meant for convenience such that the details beyond the implementation can
be ignored to get results. Just run the cell with (Shift+Enter). Some of the more important bits
codes will be briefly explained.

v[ke_, rm_: 0.511]

- Converts MeV into m
s .

- First argument is energy of particle in MeV
- Optional second argument defaults to the electron rest mass in MeV. Can be specified

with another rest mass for another particle. (i.e. 938.27 for a proton)

myNDSolve[{x0_, y0_, z0_}, {vx0_, vy0_, vz0_}, mi_: m, ei_: e, prec_: 10^8]

- This functions numerically solves for the position of particle. It only gives the result
which will likely be of little use if used alone. See the next function which makes use
of this function as well as providing plots.

- First argument specifies the initial position of particle in x,y, and z.
- Second argument specifies the initial velocity of the particle
- Optional third argument specifies mass of particle in kg. (defaults to electron mass)
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- Optional fourth argument specifies charge of particle. The convention of the code is that
e is the electron charge, so a proton’s charge in this code will be −e. (defaults to
electron charge)

- Optional fifth argument specifies the maximum number of steps for Mathematica to take.
If code encounters stiffness issues, increasing this may help. (defaults to 108)

plotNDSolve[{x0_, y0_, z0_}, {vx0_, vy0_, vz0_}, type_: "", mi_: m,
ei_: e, prec_: 10^8, step_: 10^-10]

- Does everything the previous function does but will also plot the results to visualize the
trajectory.

- First argument specifies the initial position of particle in x,y, and z.
- Second argument specifies the initial velocity of the particle
- Optional third argument specifies the type of plot to show. 3 options that can be used.

1. “3d”: 3D plot of the trajectory.
2. “Hist”: Histogram of trajectory positions.
3. Anything else will give a 2D parametric plot of the radial trajectories, a plot of the

longitudinal trajectory against time, and a plot of the radial trajectories against
time.

(defaults to the 2D plots)
- Optional fourth argument specifies mass of particle in kg. (defaults to electron mass)
- Optional fifth argument specifies charge of particle. The convention of the code is that

e is the electron charge, so a proton’s charge in this code will be −e. (defaults to
electron charge)

- Optional sixth argument specifies the maximum number of steps for Mathematica to
take. If code encounters stiffness issues, increasing this may help. (defaults to 108)

- Optional seventh argument specifies the steps the increment of steps taken in obtaining
points for plotting. Decreasing will give a more detailed graph but will slow perfor-
mance. (defaults to 10−10)

7.2.2 Electron Density Cells

If you are only interested in running the code and changing the time, position, and velocity
just run all the cells until you get to Static Plots. Specify the time with tfinal and modify
plotNDSolve.

Some additional details are provided below if you want to modify the default code.

Lens Parameters: Specifies some of the lens parameters.

Magnetic Field: Specifies the magnetic field.

Constants: Various constants as well as the electron density represented by η

Longitudinal Potential: Cell block to obtain the potentials.

- The format of the cell is first I state the Laplacian and which dimensions. Next will
be the boundary conditions relevant to the situation. The last part will attempt to
numerically solve for the potential for the given dimensions specified above.
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- For the plasma potential I’ve included a commented out section which will solve in 3
dimensions, allowing for the potential to vary longitudinally, which can be run if
interested.
- To do so, remove the (∗ and ∗) around the code

- After the two potentials have been found, combine the two and take the derivatives along
the three directions respectively to get the electric field.
- In the radial direction I’ve had it depend solely on the plasma potential and ignored

the anode for the reasons stated in the previous section and due to numerical
issues near the border due to the anode’s solution.

- In the longitudinal direction I’ve defined it as a piecewise to reflect a situation when
the electron density is high enough to dominate over the anode.

Static Plots: Plotting results.

- Here tfinal specifies until what time to solve for. Change this variable as desired.
- Change the arguments to plotNDSolve as stated previously.

Dynamic Plots: Allows for dynamically altering values if you don’t want to mess with the
code but is not very good performance wise and does not include any considerations for
boundaries.

7.2.3 Proton Focusing

I’ve included some code to display the proton focusing. This runs much like the electron code
above, but the trajectories are for the proton not an electron. Not the main purpose of the code,
so it is more for display purposes. Included a comparison to the estimated focal length from the
theory and show’s the focusing of the lens.

7.3 Results
A quick summary of some of the results the code can produce. Assume default parameters lens
length ℓ = 500× 10−3 m, anode radius RA = 35× 10−3 m, anode voltage V = 630 V, magnetic
field Bz = 0.008 T, electron density at 0.9 × Brillouin Flow Limit, initial position (0, 0, ℓ

2 ) and
initial velocity (1 eV, 1 eV, 100 eV).

2D Plots

Can output 2D plots, the left is for the radial motion, the middle one is the longitudinal motion
against time, and the one on the right is of the radial trajectories plotted against time.
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Figure 12: Solves until a time t = 10−7 s

The code can vary the time to which it will solve for, increased time to t = 10−6 s.

Figure 13: Increased time to t = 10−6 s.

3D Plots

Code can output a 3D plot:

Figure 14: Solves until a time t = 10−7 s.
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Histogram

Can also output a histogram:

Figure 15: Solves until a time t = 10−7 s.

Proton Focusing

Can plot 2D, 3D, and histograms much like above. Also included focal length as compared with
the theory:

Figure 16: When electron density at the Brillouin flow limit, proton escapes at ∼ 3.6× 10−8 s.

Boundaries

Code includes considerations for boundaries to stop integrations once a boundary is reached.
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Figure 17: Increased velocity to an initial value of (100 eV, 1 eV, 100 eV). Stops when it reaches
a radius matching the anode radius at a time ∼ 5.869 × 10−9 s. (output in the code but not
shown in the image)

Figure 18: Increased velocity to an initial value of (1 eV, 1 eV, 1 MeV). Stops when it escapes in
the forward direction at ∼ 8.85× 10−10 s.

Figure 19: Increased velocity to an initial value of (1 eV, 1 eV,−1 MeV). Stops when it escapes
in the backward direction at ∼ 8.85× 10−10 s.
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Changing Electron Density

Figure 20: Results when at 0.9 × Brillouin Limit(top), 1.0 × Brillouin Limit(middle), 1.1 ×
Brillouin Limit(bottom). At higher electron density, the code will stop at earlier times, so the
plots are not at equal time.
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Changing Magnetic Field

Figure 21: Changing magnetic field to include an x-component: (0.001 T, 0, 0.008 T), solving to
a time t = 10−7 s.

Dynamical Plot

Figure 22: Can dynamically edit values if desired, though performance wise does not run too
well.
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