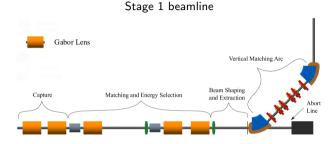
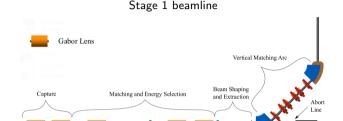
Update on the study and design of the Gabor lens


Titus-Stefan Dascalu

December 16, 2020

Gabor lens studies - motivation

- ► Key element for LhARA


 - ▷ ensures energy selection

Gabor lens studies - motivation

- ▶ Key element for LhARA

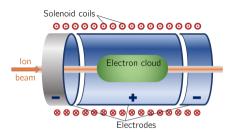
 - ▷ ensures energy selection

- ▶ Previous designs and experiments: performance lower than predicted
 - ▷ focusing strength (low filling factors)¹
 - ▷ aberrations (focusing quality)¹
 - ▷ emittance growth²
- Previous numerical simulations

O. Meusel, arXiv:1309.4654
 J.A. Palkovic, FERMILAB-CONF-88-177, 88-10-03
 M. Droba, IPAC 2013, TUPWO008

Outline

- Gabor lens advantages
- The 'Imperial' lens prototype
 - Simulation of the stable regime
 - Beam test
 - Simulation of most common instabilities
- Numerical model of 'dipole' instability
- Comparison between simulations and experiment
- Impact on the new design of the lens


3 / 16

Space-charge lens

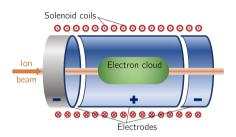
Advantages

- ► Focus in both planes simultaneously
- ► Energy dependent focusing strength
- ➤ Cost effective solution compared to solenoids

$$rac{B_{
m GL}}{B_{
m sol}} = \sqrt{rac{m_e}{m_{
m ion}}}$$

Penning-Malmberg trap

Space-charge lens

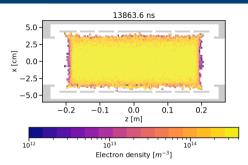

Advantages

- ► Focus in both planes simultaneously
- ► Energy dependent focusing strength
- Cost effective solution compared to solenoids

$$rac{B_{
m GL}}{B_{
m sol}} = \sqrt{rac{m_{
m e}}{m_{
m ion}}}$$

Challenges

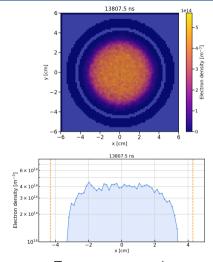
- ► High-vacuum, high-voltage operation
- Plasma instabilities
- Diagnostics



Penning-Malmberg trap

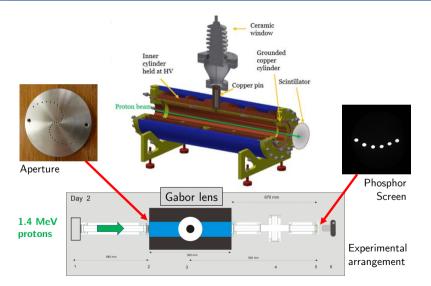
n _e	$\leq 5 imes 10^{15} \mathrm{m}^{-3}$
$V_{ m anode}$	\leq 30 kV
$B_{ m GL}$	\leq 33 mT

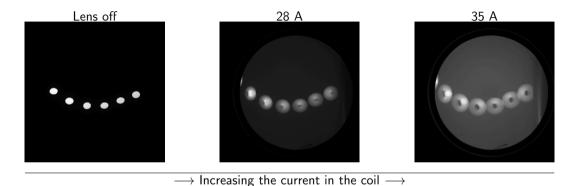
Lens parameters required for LhARA


Stable operation of the lens

Longitudinal cross-section

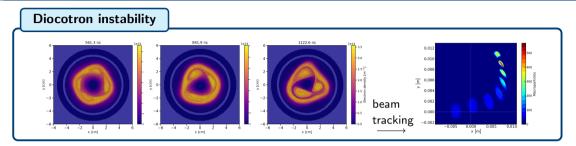
The electron cloud was simulated with a PIC code⁴:

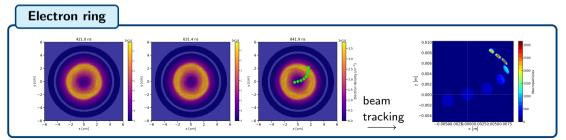

- ▶ Electron densities of $10^{14} 10^{15} \,\mathrm{m}^{-3}$ can be achieved
- lacktriangleq Plasma is stable for $t \leq 20 \, \mu \mathrm{s}$ and rotates around beam axis
- ► The lens is partially filled


Transverse cross-section

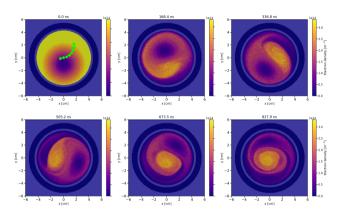
⁴ VSim, https://txcorp.com/vsim

Surrey beam test of the 'Imperial lens'

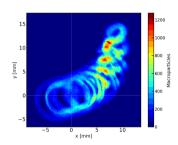

Beam test results



- ► Focusing occurs
- ▶ Pencil beams are focused into ring shapes
- ► The shape and intensity of each ring vary


Indication of: Non-uniform, rotating plasma column

Investigate the most typical instabilities

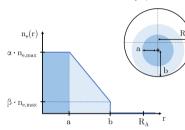


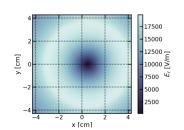
Instability with dipole structure leads to rings

- Two regions of low and high electron density
- ▶ Instability lasts for $1 \mu s$
- ▶ Possible driving mechanism: stream of electrons

Pencil beams are focused into ring shapes

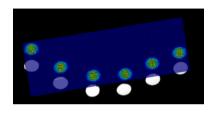
 Ring formation linked to asymmetry and rotation of the plasma


Alternative model of the electron cloud

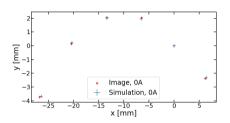

► Full simulation of plasma and proton beam using the PIC code is computationally expensive

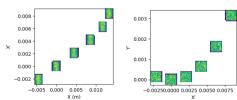
► Aims:

- ▷ Investigate the parameter space for the plasma
- Understand the origin of the images taken during the beam test
- ▷ Reproduce the main features
- ▶ Model the instability:
 - ▷ Idealised cylindrical electron cloud which rotates
 - ▷ Generate 4D electric field map for the plasma


Idealised density profile

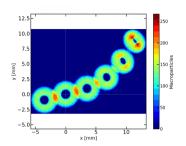
⁵ https://doi.org/10.1016/j.cpc.2020.107200


Match the divergence and position of the pencil beams


Simulation output overlaid on image

Phase-space of pencil beams at entry plane of the lens:

- Position determined by the aperture
- x-, y-divergence can be found from size and position of the beam spots on the screen (lens tuned off)



Centroids of the pencil beams

Phase-space at entry plane of the lens

Simulation vs. experiment

Macroparticles hitting the screen as simulated with BDSIM

Qualitative agreement obtained when tuning the free parameters of the model:

- electron density
- radius and period of rotation of the plasma

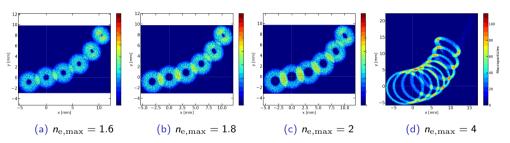
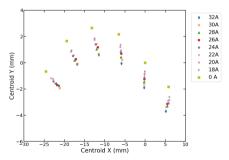


Image of the screen from the beam test

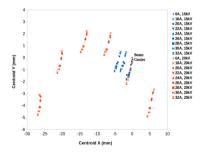
Features not reproduced by simulation:

- intensity profile of each ring
- ▶ eccentricity of central pencil beam
 → missalignement

Simulation output sensitive to density of plasma

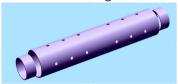


The effect of increasing the maximum electron density on the appearance of the ring spots (units of $10^{14}\,\mathrm{m}^{-3}$)


- ▶ It provides a method to estimate the density of the plasma during the beam test
- ▶ Current estimation: filling factor < 5% compared to the max. theoretical electron density

Variability between measurements

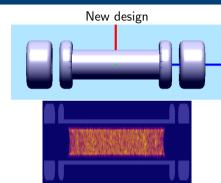
- ▶ Work in progress to obtain quantitative agreement
- ➤ Signs that the rotation of the plasma column changed when incrementing the current in the coil

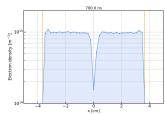

(Values from simulations)

(Data from beam test)

Impact on new design of the lens

Old design

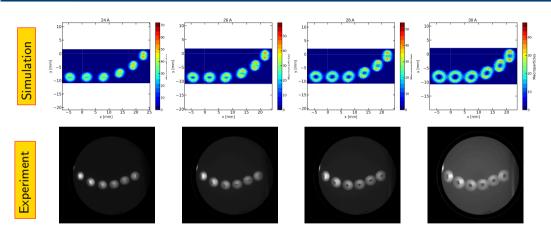



Simulation of the new lens

- electron loss near the central axis
- ightharpoonup no instability develops on timescale of $10\,\mu\mathrm{s}$

Next steps in the design

- ▶ active filling of the lens
- ightharpoonup ensure $E \times B$ rotation of the plasma
- ▶ damping mechanism to ensure uniform filling



15 / 16

Summary

- ▶ Plasma under stable regime of the lens simulated with PIC code
 - establish the effect of the shape and configuration of electrodes on the uniformity of the electron cloud
- ► Most typical instabilities observed in simulations
- ► The **effect of these instabilities on pencil beams** was studied with both a PIC code and a particle tracking code
- Instability with dipole structure was associated to the formation of ring spots from the pencil beams
- ▶ An idealised model was created for the 'dipole' instability
 - qualitative agreement with experiment
 - ▷ offers an estimation of the electron density and a description of the motion of the plasma

Backup: Simulation vs. experiment

▶ Matching patterns when the current through the coil is increased