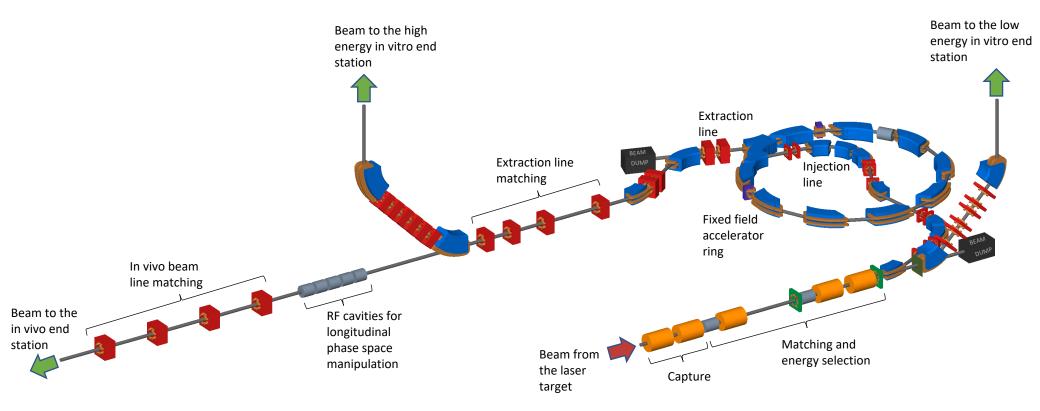
Overview of the LhARA Facility

Review of the LhARA pre-CDR

Ajit Kurup

31st March 2020


Introduction

- Overview of the design of the facility.
- Design parameters.
- Staging.
- Accelerator.
- Instrumentation.
- Project schedule and R&D plan.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Accelerator

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

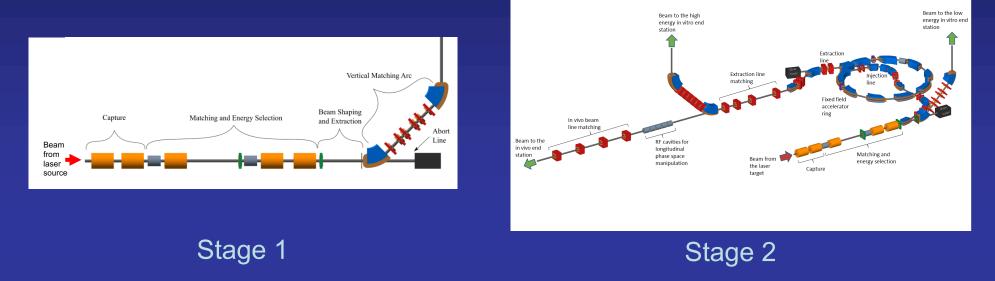
Design parameters

Parameter	Value or range	Unit	
Laser driven proton and ion source			
Laser power	100	TW	
Laser Energy	2.5	J	
Laser pulse length	25	fs	
Laser rep. rate	10	Hz	
Proton energy	15	MeV	
Proton and ion capture			
Beam divergence to be captured	50	mrad	
Gabor lens effective length	0.857	m	
Gabor lens length (end-flange to end-flange)	1.157	m	
Gabor lens cathode radius	0.0365	m	
Gabor lens maximum voltage	65	kV	
Number of Gabor lenses	2		
Alternative technology: solenoid length	1.157	m	
Alternative technology: solenoid max field	1.3	Т	
strength			
Stage 1 beam transport: matching & energy selection, beam delivery to low energy end station			
Number of Gabor lenses	3		
Number of re-bunching cavities	2		
Number of collimators for energy selection	1		
Arc bending angle	90	Degrees	
Number of bending magnets	2		
Number of quadrupoles in the arc	6		
Alternative technology: solenoid length	1.157	m	
Alternative technology: solenoid max field	0.8 (1.4)	Т	
strength (to serve the injection line to the Stage 2)			

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Design parameters


Parameter	Value or range	Unit	
Stage 2 beam transport: FFA, transfer line, beam		15	
Number of bending magnets in the injection line	7		
Number of quadrupoles in the injection line	10		
FFA: Machine type	single spiral scaling FFA		
FFA: Extraction energy	20-127	MeV	
FFA: Number of cells	10		
FFA: Orbit R _{min}	2.92	m	
FFA: Orbit R _{max}	3.48	m	
FFA: External R	4	m	
FFA: Number of RF cavities	2		
FFA: RF frequency	1.46-6.48	MHz	
FFA: spiral angle	48.7	Degrees	
FFA: Max B field	1.4	Т	
FFA: k	5.33		
FFA: Magnet packing factor	0.34		
FFA: Magnet gap	0.047	m	
FFA: Number of kickers	2		
FFA: Number of septa	2		
Number of bending magnets in the extraction line	2		
Number of quadrupoles in the extraction line	8		
Arc bending angle	90	Degrees	
Number of bending magnets in the vertical arc	2		
Number of quadrupoles in the vertical arc	6		
Number of cavities for longitudinal phase space	5		
manipulation			
Number of quadrupoles in the in vivo beam line	4		
In vitro biological end stations			
Maximum input beam diameter	1-3	cm	
Input beam energy spread	< 2	%	
Input beam uniformity	< 5	%	
Scintillating fibre layer thickness	0.25	mm	
Air gap length	5	mm	
Cell culture plate thickness	1.15	mm	
Cell layer thickness	0.03	mm	
Cell nutrient solution	15	mm	
Number of end stations	2		
In vivo biological end station			
Maximum input beam diameter	1-3	cm	
Input beam energy spread	< 2	%	
Input beam uniformity	< 5	%	
Beam options	Spot-scanning, passive scatter-		
	ing, micro-beam		

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Staging

Construction will be done in two stages.

- The goal is maximise scientific output.
 - Generate scientific output during construction of Stage 1.
 - Radiobiology programme using Stage 1 whilst constructing Stage 2.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Schedule

- 10 year programme.
 - Radiobiology.
 - At other facilities.
 - Experiments whilst Stage 2 is being constructed.
 - System/near clinical aspects and outreach.
 - Spin offs.
 - PPI.
 - Outreach.
- 5 year R&D plan.
- Construction.
 - 2 years for Stage 1.
 - 5 years for Stage 2.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Five year R&D plan

 Aims to address the technical challenges highlighted in the pre-CDR and deliver technical designs for the LhARA facility.

• Facility design.

- Development of conceptual design.
- Development of technical design.
- CDR (detailed for Stage 1).
- TDR Stage 1.
- TDR Stage 2.
- End stations.
 - Automation, sample handling, imaging.
 - Simulation of the end stations.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Five year R&D plan

- Gabor lens.
 - First generation prototype.
 - Second generation prototype.
 - Theoretical studies.
 - Electron density measurements.
 - Alpha source and detector tests.
- Laser-driven source.
- Laser-capture interface.
- Investigation of space charge algorithms.
- Stage 1 beam line performance evaluation.
- Vertical bend.
- Capture technology milestone.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Five year R&D plan

• FFA.

- Design and simulation.
- Detailed magnet design.
- Magnet prototype.
- RF cavity design and performance evaluation.
- Injection and extraction design.
- Stage 2 performance evaluation.
- Longitudinal phase space manipulation design, simulation and prototyping.
- Final beam preparation for in vivo end station.
- Instrumentation.
 - Low-energy beam diagnostics.
 - Online dosimetry and dose profile.
 - Absolute dosimetry at ultra-high dose rates.
 - Fast feedback and control.
 - High-energy beam diagnostics.
- Software and Computing.
 - Development of a global data acquisition and processing system.
 - Development of the controls and monitoring system.

Ajit Kurup

Summary

- LhARA has the capability to provide unique beams for the study of radiobiology.
- Two stage approach will aim to maximise scientific output whilst optimising the machine performance.
 - Stage 1: protons up to 15 MeV.
 - Stage 2: protons up to 127 MeV and C^{6+} ions up to 33MeV/u.
- Conceptual design and initial simulations show the required performance can be achieved in principle.
- Technical challenges will be addressed by the R&D plan.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020