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Gabor Lenses – Why?

• Focal length scales with the kinetic energy 
of the incoming beam

• Solenoid like, but requires much lower B 
field for equivalent focal length

BGPL = BSOL*(me/mion)0.5

For protons

BGPL = BSOL /44

• Quadrupole scales with momentum, longer focal length 
at high beam energy.
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Gabor Lenses
• Gabor – ‘A space-charge lens for the focussing of ion 

beams’ Nature July 19, 1947.

• A uniform static electron ‘cloud’ produces an ideal 
focusing electric field.
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Gabor Lenses - History

• Brookhaven. Mobley, Gammel, Maschke

• Russia Morozov, Goncharov

• Livermore NL Booth & Lefevre

• Fermi NL Palkovic

• Maryland Reiser

But… lens performance was poor

Re-emergence – heavy ion beam. 
- Devices with background plasma for beam space charge 

neutralisation.  Goncharov, Tauschwitz, Ivanov, Neuner.

Frankfurt/ICL  Pozimski, Schulte, Meusel

Experiment
ne ~1 x 1015

Numerical simulation
Diagnostics

Electron density – ion beam  
Electron temp – spectroscopic
ne < 1 x 1015 dicotron instability 

Seen in numerical simulation
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Gabor Lens - Theory

Radial confinement

𝑛𝑒 = 𝑒0𝐵
2/2𝑚𝑒𝑒 = 5𝑥1018 𝐵2

Axial confinement

𝑛𝑒 = 4𝑒0𝑉𝐴/𝑒𝑅
2

Focal length

𝑓 = 4𝑚𝑒𝑚𝑝𝑣𝑝
2/𝑒2𝐵2𝑙

B field reduction

𝐵𝑔𝑝𝑙/𝐵𝑠𝑜𝑙 = (𝑚𝑒/𝑚𝑖𝑜𝑛)
0.5 ~ = 44
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Penning – Malmberg trap

Excellent 
beam 

aperture

Design 
for High 
voltage

6



High Voltage design
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Magnetic Field
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Target Capture Interface

Vacuum vessel division 
line 100mm upstream of 
target foil
• Target vacuum 1x10-6

mBar at best, possibly 
considerably poorer -
ablation of target

• Gabor lens 1x10-8

mBar desirable
• No physical barrier –

differential pumping.
• Re-entrant ‘cone’ 

penetrating 50mm 
into Target-side 
vacuum 

• 3 orders of 
magnitude pressure 
differential
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R & D Experiment Phase 1

1st Pass plasma lens

• Penning-Malmberg Trap 
– 3 ‘floating’ electrodes

– Options to operate 
• grounded anode

• grounded cathode

• Processed for high vacuum operation

• DC high voltage

• Characterisation of properties using alpha 
source and thin film detector in vacuum. 
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Diagnostics
Electron density measurement

Phase shift = ne*l*l*[e2/4pc2mee0]

Maximise l and l to maximise phase shift

For l = 100mm, l =2m 

phase shift ~<1 degree at ne=1 x1014

No spatial resolution – limited bandwidth

Spatially resolved data via light emission from 
plasma
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Numerical simulation 
Plasma Stability

Full 3D pic code simulation

• Well established group 

– Prof. Bingham RAL/Strathclyde

– Mini-cluster or larger

• Diocotron instability.

OSIRIS, VSIM, Vorpal, EPOCH, Magic
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Electron beam simulation

Original proposal by Gabor 

• ‘hot wire’ electron source. 

• modern cathode ~2-10A/cm2 <105A/m2 

• required electron density, ne=1x 1014

• required current density is easily achievable 
with modern cathodes – an order of magnitude 
uplift in electron density may be possible

CST Microwave Studio to simulate electron gun –
Strathclyde expertise in high alpha electron guns
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R & D Experiment Phase 2

2nd generation plasma lens

• Input from PIC code modelling for 
stability

• Electron source inside lens

• RF system for measurement of e density

• Processed for high vacuum operation

• Pulsed HV ~10s of ns pulse length. 

• Characterisation of properties using alpha 
source and thin film detector in vacuum. 
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Recognise possibility Gabor lens design may 
not converge in time.

Parallel investigation of alternate solenoid 
design.

1.4T magnet ~1m long 35mm aperture. 

Warm magnet design possible, 
superconducting possibly too expensive.

Pulsed at 10Hz also possible.

Break point in program to allow switch to 
alternate solution.

Parallel – Solenoid design
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