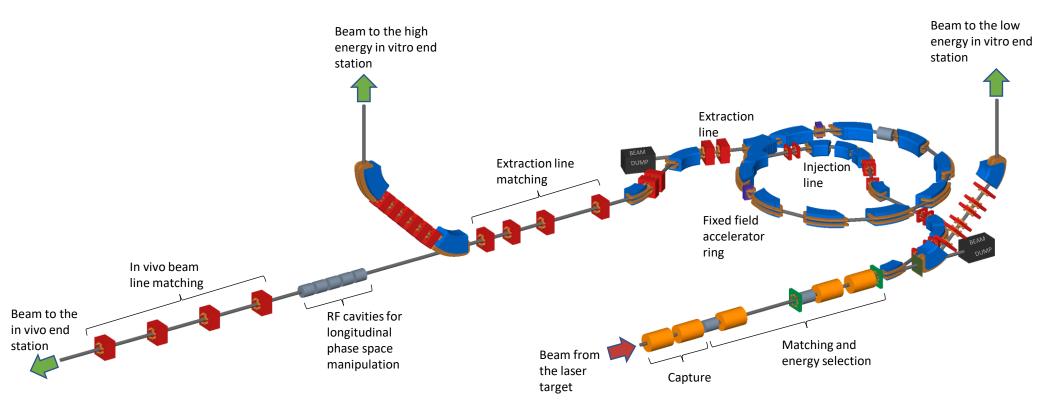
Overview of the LhARA Facility

Review of the LhARA pre-CDR

Ajit Kurup

31st March 2020


Introduction

- Overview of the design of the facility.
- Design parameters.
- Staging.
- Accelerator.
- Instrumentation.
- Project schedule and R&D plan.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Accelerator

Ajit Kurup

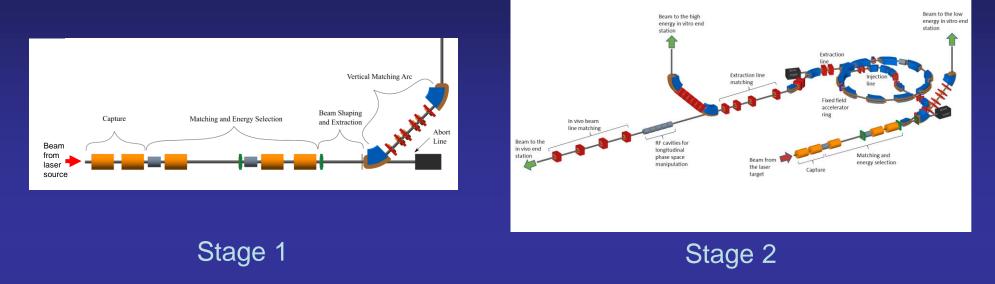
Review of the LhARA pre-CDR 31st March 2020

Design parameters

Parameter	Value or range	Unit						
Laser driven proton and ion source								
Laser power	100	TW						
Laser Energy	1	J						
Laser pulse length	30	fs						
Laser rep. rate	10	Hz						
Proton energy	15	MeV						
Proton and ion capture								
Beam divergence to be captured	50	mrad						
Gabor lens effective length	0.857	m						
Gabor lens length (end-flange to end-flange)	1.157	m						
Gabor lens cathode radius	0.0365	m						
Gabor lens maximum voltage	65	kV						
Number of Gabor lenses	2							
Alternative technology: solenoid length	1.157	m						
Alternative technology: solenoid max field	1.3	Т						
strength								
Stage 1 beam transport: matching & energy sele	ction, beam delivery to low energy	end station						
Number of Gabor lenses	3							
Number of re-bunching cavities	2							
Number of collimators for energy selection	1							
Arc bending angle	90	Degrees						
Number of bending magnets	2							
Number of quadrupoles in the arc	6							
Alternative technology: solenoid length	1.157	m						
Alternative technology: solenoid max field	0.8 (1.4)	Т						
strength (to serve the injection line to the Stage								
2)								

Ajit Kurup

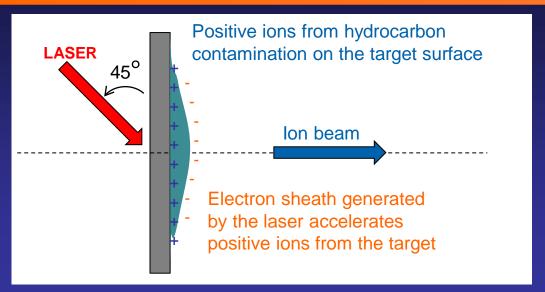
Design parameters

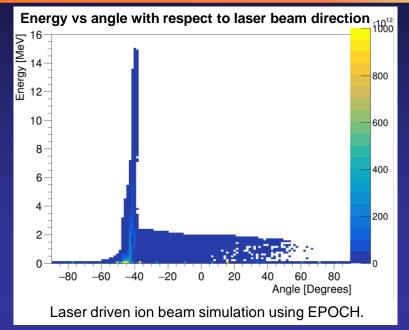

Parameter	Value or range	Unit				
Stage 2 beam transport: FFA, transfer line, beam delivery to high-energy endstations						
Number of bending magnets in the injection line	7					
Number of quadrupoles in the injection line	10					
FFA: Machine type	single spiral scaling FFA					
FFA: Extraction energy	20-127	MeV				
FFA: Number of cells	10					
FFA: Orbit R _{min}	2.92	m				
FFA: Orbit R _{max}	3.48	m				
FFA: External R	4	m				
FFA: Number of RF cavities	2					
FFA: RF frequency	1.46-6.48	MHz				
FFA: spiral angle	48.7	Degrees				
FFA: Max B field	1.4	Т				
FFA: k	5.33					
FFA: Magnet packing factor	0.34					
FFA: Magnet gap	0.047	m				
FFA: Number of kickers	2					
FFA: Number of septa	2					
Number of bending magnets in the extraction line	2					
Number of quadrupoles in the extraction line	8					
Arc bending angle	90	Degrees				
Number of bending magnets in the vertical arc	2					
Number of quadrupoles in the vertical arc	6					
Number of cavities for longitudinal phase space	5					
manipulation						
Number of quadrupoles in the in vivo beam line	4					
In vitro biological end stations	·					
Maximum input beam diameter	1-3	cm				
Input beam energy spread	< 2	%				
Input beam uniformity	< 5	%				
Scintillating fibre layer thickness	0.25	mm				
Air gap length	5	mm				
Cell culture plate thickness	1.15	mm				
Cell layer thickness	0.03	mm				
Cell nutrient solution	15	mm				
Number of end stations	2					
In vivo biological end station						
Maximum input beam diameter	1-3	cm				
Input beam energy spread	< 2	%				
Input beam uniformity	< 5	%				
Beam options	Spot-scanning, passive scatter-					
	ing, micro-beam					

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

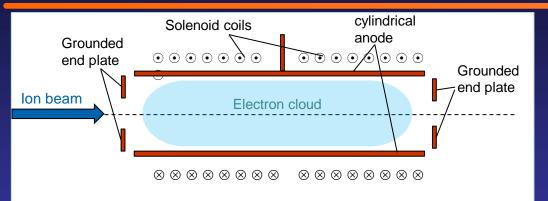
Staging

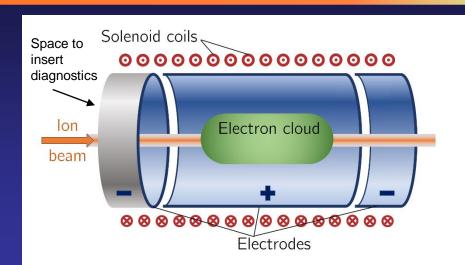

Construction will be done in two stages.


- The goal is maximise scientific output.
 - Generate scientific output during construction of Stage 1.
 - Radiobiology programme using Stage 1 whilst constructing Stage 2.

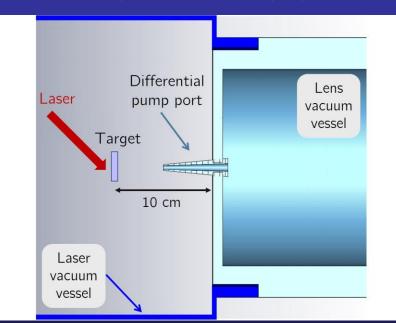
Ajit Kurup

Laser source


Principle of target normal sheath acceleration (TNSA).

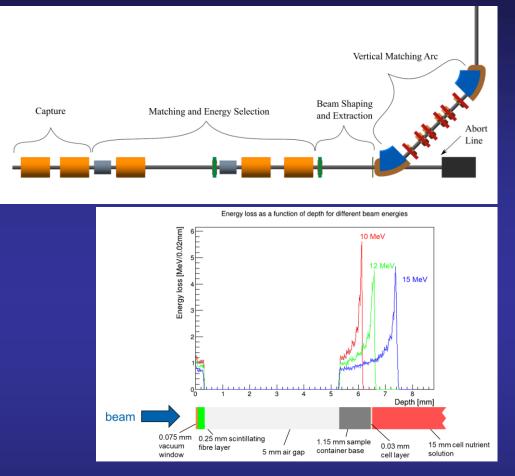

- Produces intense beams and multiple species, e.g. proton and carbon ions.
 - Overcome space charge limit of conventional sources since beams are produced with energies O(10) MeV.
- Issues to consider
 - Large energy spread.
 - Large divergence.
 - Ion beam stability.
 - Laser has been over specified so it is not operated near it limits.
 - Target.

Ajit Kurup

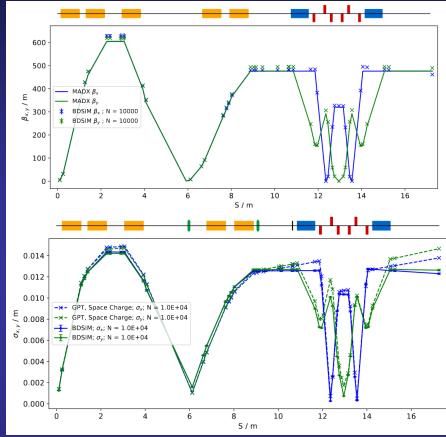

Capture

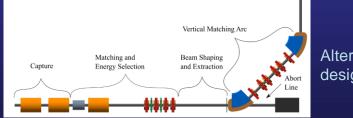
- Strong focusing essential to capture the beam from the laser source.
- The Gabor lens uses a plasma to generate a strong electro-static focusing field.
 - Focal point is energy dependent.
- Equivalent solenoids require field of 1.3T
- Prototype development to study plasma stability, electron density and verify operation in relatively high vacuum.

Different electrode configuration to allow inserting diagnostic probes



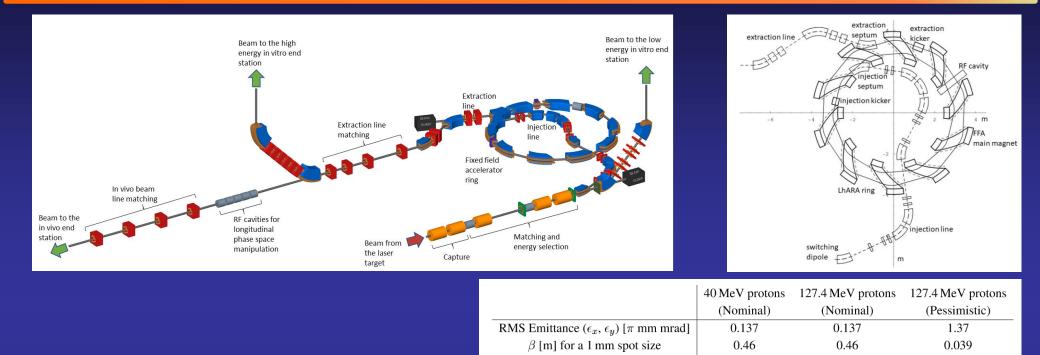
Schematic of proposed differential pumping scheme.


Ajit Kurup


Review of the LhARA pre-CDR 31st March 2020

Beam transport – Stage 1

- Optics design: BeamOptics and MADX.
- Particle tracking simulations: BDSIM and GPT.
- Energy deposition in the end station: BDSIM.



Alternative design

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Beam transport – Stage 2

 β [m] for a 10 mm spot size

 β [m] for a 30 mm spot size

46

410

46

410

- Post acceleration done using a spiral scaling fixed field accelerator (FFA).
- Injection and extraction lines for the FFA.
- High energy arc for in vitro end station.
- In vivo beam line.
 - Cavities for longitudinal phase space manipulation.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

4.5

40

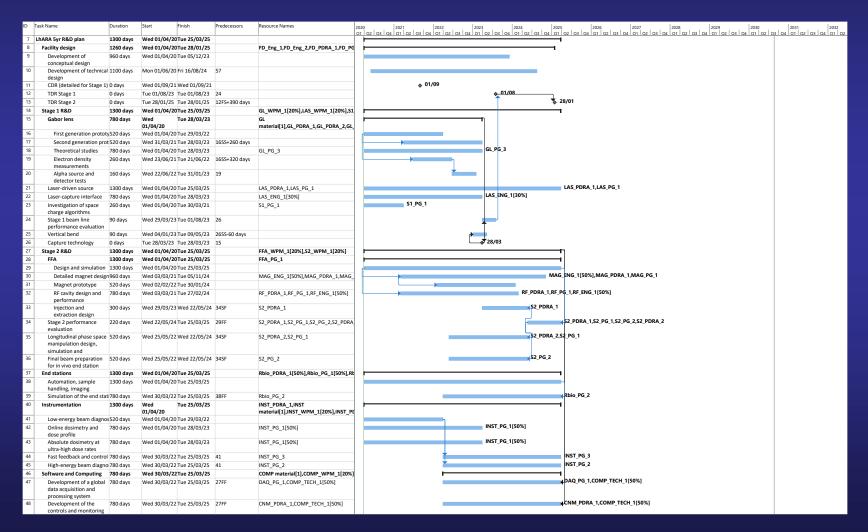
Instrumentation

- Beam diagnostics.
 - Low energy.
 - Novel detectors.
 - High energy.
 - Conventional methods.
- Dosimetry.
 - Online dosimetry of high intensity beams.
 - Calibration.
- Fast feedback and control.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Schedule


D	Task Name	Duration	Start	Finish	Predecessors	Resource Names	2020 Q1 Q2 Q3	2021 2022 3 04 01 02 03 04 01 02 0	2023	2024 2025 04 01 02 03 04 01 02	2026 2027 2028 2029 2030 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02	2031 2032 03 04 01 02 03 04 01 02
1	Radiobiology	2743 days	Fri 14/02/20	Tue 20/08/30		Rbio_WPM_1[20%]						-
2	Radiobiology at partner facil	1443 days	Fri 14/02/20	Wed 27/08/25	3SF	Rbio_PDRA_1[50%],Rbio_PG_1[50%]					Rbio_PDRA_1[50%],Rbio_PG_1[50%]	
3	Radiobiology at LhARA	1300 days	Wed 27/08/25	Tue 20/08/30	50	Rbio_PDRA_1					F	Rbio_PDRA_1
	System/near clinical aspects and outreach		Mon 17/02/20	Tue 20/08/30		Rbio_PDRA_2,Outreach_Coord_1[20%]	-					-
5	Pre-LhARA: in collaboration with RFI SnL theme and other partners	1442 days	Mon 17/02/20	Wed 27/08/25	6SF							
6	LhARA: in collaboration with RFI SnL theme and other	1300 days	Wed 27/08/25	Tue 20/08/30	50							
7	LhARA 5yr R&D plan	1300 days	Wed 01/04/20	Tue 25/03/25						1		
49	Construction	1670 days	Wed 30/08/23	Tue 22/01/30					r		1	
50	LhARA Stage 1 construction	520 days	Wed 30/08/23	Tue 26/08/25	60	FD_Eng_1,FD_Eng_2				•	FD_Eng_1,FD_Eng_2	
51	LhARA Stage 2 construction	1300 days	Wed 29/01/25	Tue 22/01/30	13	FD_Eng_1,FD_Eng_2					FD_E	ng_1,FD_Eng_2
52	Project office	2666.5 days	Mon 01/06/20	Tue 20/08/30	57SS	PO_ADMIN_1						-
53	Project leader	2666.5 days	Mon 01/06/20	Tue 20/08/30								
54	Project manager	2666.5 days	Mon 01/06/20	Tue 20/08/30								
55	WP managers	2666.5 days	Mon 01/06/20	Tue 20/08/30								
56	Gateway process	847 days	Mon 01/06/20	Tue 29/08/23					1			
57	GW0 Strategic assessment	0 days	Mon 01/06/20	Mon 01/06/20			↓ 01					
58	GW1 Business justification	0 days	Fri 05/02/21	Fri 05/02/21	57FS+9 mons			\$_05/02				
59	GW2 Delivery strategy	0 days	Fri 15/10/21	Fri 15/10/21	58FS+9 mons,11			* 15/10				
60	GW3 Investment decision	0 days	Tue 29/08/23	Tue 29/08/23	12FS+1 mon				*	29/08		

- Radiobiology programme.
- System/near clinical aspects and outreach.
- 5 year R&D plan.
- Construction
 - 2 years for Stage 1.
 - 5 years for Stage 2.

Ajit Kurup

Five year R&D plan

 Aims to address the technical challenges highlighted in the pre-CDR and deliver technical designs for the LhARA facility.

Ajit Kurup

Five year R&D plan

- Facility design.
 - Development of conceptual design.
 - Development of technical design.
 - CDR (detailed for Stage 1).
 - TDR Stage 1.
 - TDR Stage 2.
- Gabor lens.
 - First generation prototype.
 - Second generation prototype.
 - Theoretical studies.
 - Electron density measurements.
 - Alpha source and detector tests.
- Laser-driven source.
- Laser-capture interface.
- Investigation of space charge algorithms.
- Stage 1 beam line performance evaluation.
- Vertical bend.
- Capture technology milestone.

Ajit Kurup

Review of the LhARA pre-CDR 31st March 2020

Five year R&D plan

• FFA.

- Design and simulation.
- Detailed magnet design.
- Magnet prototype.
- RF cavity design and performance evaluation.
- Injection and extraction design.
- Stage 2 performance evaluation.
- Longitudinal phase space manipulation design, simulation and prototyping.
- Final beam preparation for in vivo end station.
- End stations.
 - Automation, sample handling, imaging.
 - Simulation of the end stations.
- Instrumentation.
 - Low-energy beam diagnostics.
 - Online dosimetry and dose profile.
 - Absolute dosimetry at ultra-high dose rates.
 - Fast feedback and control.
 - High-energy beam diagnostics.
- Software and Computing.
 - Development of a global data acquisition and processing system.
 - Development of the controls and monitoring system.

Ajit Kurup

Summary

- LhARA has the capability to provide unique beams for the study of radiobiology.
- Two stage approach will aim to maximise scientific output whilst optimising the machine performance.
 - Stage 1: protons up to 15 MeV.
 - Stage 2: protons up to 127 MeV and C⁶⁺ ions up to 33MeV/u.
- Conceptual design and initial simulations show the required performance can be achieved in principle.
- Technical challenges will be addressed by the R&D plan.

Ajit Kurup