LhARA Capture Meeting

29th July 2021

Titus Dascalu

Diocotron motion

Electron plasma initial distribution

From last week...

$$\omega_r = \frac{E_r}{Br} - \left(\frac{k_B T}{qBrn} \frac{\partial n}{\partial r}\right) + \frac{\omega_r^2}{\Omega_c}$$

thermal pressure term

Electron plasma initial evolution

- Local ω_r initialised according to no pressure model
- Plasma temperature set to $T=0\,\mathrm{eV}$ in the rotating frame

Electron plasma initial evolution

- Local ω_r initialised according to no pressure model
- Plasma temperature set to T = 1 eV in the rotating frame

Plasma initialisation scheme

Assumptions

- The diocotron frequency is mostly determined by spatial profile of the plasma column
- The profile of the electron cloud does not change significantly from the equilibrium distribution in either
 - Offsetting the plasma from the axis
 - Beam capture

Plasma initialisation scheme

 $T_e \sim 0.1 \, \mathrm{eV} - 1.0 \, \mathrm{eV}$ (close to values from experiment)

 ω_r set to generate a radial profile close to experiment (plasma uniform up to radius ≈ 1 mm)

Calculate the 2D (r,z) plasma profile by solving full Poisson equation for electron plasma in thermal equlibirum at T_e

Load the axisymmetric 2D profile into VSim

- set local ω_r according to the equilibrium equation in the absence of pressure (T=0 eV) to avoid radial expansion of plasma and drop in density
- in the z-direction sample velocities from Gaussian with temperature T_e

Set the grid size as a fraction of the Debye length $\lambda_D(T_e)$

Couple of checks throughout the simulation

- check velocity distribution to make sure macroparticles satisfy CFL condition
- calculate local T and λ_D in each cell and compare latter to max. grid dimension

Diocotron simulation – Parameter Set 1

Main constraints:

$$f_{\infty} = \frac{cNe}{\pi BR_{w}^{2}}$$
 required total simulation time

$$\lambda_{\rm D} = \sqrt{\left(\frac{\varepsilon_0 k_{\rm B} T}{n_0 e^2}\right)}$$
 grid spacing

$$\omega_r, T$$
 time step (from CFL condition)

Parameter	Value
$n_e~\mathrm{[m^{-3}]}$	1×10^{15}
B [T]	0.03
V_{gate} [V]	100
r_p [mm]	1.5
L_p [cm]	≈ 2
<i>d</i> [cm]	1
<i>T</i> [eV]	~1
Estimated T_{dioc} [μ s]	≈ 3