

Design Study for an Ion Therapy Research Facility

Hywel Owen (on behalf of the ITRF and LhARA Collaborations) STFC Daresbury Laboratory Accelerator Science and Technology Centre

6th June 2023 ARR Glasgow

(The work of many people is shown in these slides – I've tried to acknowledge it all!)

From physics to clinic

Robert R Wilson "*Radiological Use of Fast Protons*". Radiology **47** (5): 487–491. November 1946. <u>doi:10.1148/47.5.487</u>

 $-\frac{dE}{dx} = \frac{4\pi}{m_e c^2} \cdot \frac{nz^2}{\beta^2} \cdot \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \cdot \left[\ln\left(\frac{2m_e c^2\beta^2}{I\cdot(1-\beta^2)}\right) - \beta^2\right]$

Siemens/Varian

Mevion

Technology > Experiment > Infrastructure > Clinic

UKRI, STFC, ASTeC and Infrastructures

- STFC Strategic Framework:
 - 'giving priority to infrastructures that support the science mission needs'
 - 'ensure that critical technologies are developed for future infrastructures'
 - 'provision and operation of research facilities in....any area of UKRI's activity'
- UKRI Infrastructure Fund:
 - 'aimed at supporting significant investments that enable a step change in research and innovation infrastructure'
 - New build, upgrades, or decommissioning
 - Full Project or Preliminary Activity

Over **500** nationally and internationally significant infrastructures

A breadth of expertise: 92% work across more than one topic domain

Three quarters

work with UK business and 42% with public policy organisations

Infrastructures employ just under 25,000 staff

- UKRI Infrastructure Projects:
- 32 Full Projects
- 9 Preliminary Activities ASTeC pivotal in 1/3 of PAs
- Total investment 481M 2022-2025
- Includes projects such as DIAMOND-II, SKAO, Hyper-K
- Accelerator Science and Technology Centre (100 staff)
- Science and Technology Facilities Council (1900 staff)
- 'Coordinates research and development of national infrastructures'

Developing New Capabilities

Diagnostic instrumentation (ULiv/CCC) PA

PAMELA design study (2013)

EMMA demonstrator (2012)

Science and Technology Facilities Council

Daresbury Laboratory

PROBE high-gradient proton linac (ULan/UMan)

Partnership between National Lab, academic groups, and clinical

Christie research beamline (2019)

Protons in the UK

- 1989: Clatterbridge UK world's 1st hospital proton therapy centre (62 MeV, ocular); 100 patients/year
- 2007: NRAG report 'Radiotherapy: developing a world class service for England' recommends proton facilities
- 2007: Cancer Reform Strategy
- 2008: Proton Overseas Programme; 1102 patients (2008 – 2018) <u>https://doi.org/10.1016/j.ijrobp.2020.07.2456</u> <u>https://doi.org/10.1016/j.clon.2018.02.032</u>
- 2012 NHS Strategic Outline Case
- 2015: Full Business Case approved for 2 NHS centres
- 2018: NHS Christie 1st patients seen as a big success story
- 2021: NHS UCLH 1st patients

Protons in UK:

- Evidence-based
- Intention to cure
- Emphasis on children, young adults (<25), adults with rare tumours

Clatterbridge – 62 MeV Scanditronix cyclotron Basis for much UK technology and clinical-related research

Christie – 250 MeV Varian cyclotron + unique research beamline

The Path to lons

- Various prior projects, including EU networks on particle therapy and STFC/EPSRC networks on proton therapy
- Outline proposals c. 2015-2017
- Key meeting 2019 > BJR paper 2020
- Need to learn from the past
- Overseas referral programme gave UK PBT experience
- Finding a window and a USP take opportunity
- Need for basic science to underpin future of ion therapy

BJR			$^{\odot}$ 2020 The Authors. Published by the British Institute of R
Received: 13 March 2020	Revised: 26 August 2020	Accepted: 02 September 2020	https://doi.org/10.1259/bjr.20

Cite this article as:

Kirkby KJ, Kirkby NF, Burnet NG, Owen H, Mackay RI, Crellin A, et al. Heavy charged particle beam therapy and related new radio technologies: The clinical potential, physics and technical developments required to deliver benefit for patients with cancer. *Br J F* 2020; **93**: 20200247.

GUIDELINES & RECOMMENDATIONS

Heavy charged particle beam therapy and related new radiotherapy technologies: The clinical potential physics and technical developments required to deliv benefit for patients with cancer

^{1,2}KAREN JOY KIRKBY, PhD, ^{1,2}NORMAN FRANCIS KIRKBY, ^{1,2}NEIL GUNN BURNET, ³HYWEL OWEN, ^{1,2,4}RANALD IAIN MACKAY, ⁵ADRIAN CRELLIN and ⁶STUART GREEN

 ¹Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
 ²The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
 ³University of Manchester/Cockcroft Institute, Manchester, United Kingdom
 ⁴Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
 ⁵NHS England National Clinical Lead Proton Beam Therapy, Leeds Cancer Centre, Leeds Teaching Hospitals Trust, Leeds, and St Ja Institute of Oncology, Leeds Teaching Hospitals NHS Trust, Beckett Street, Leeds, LS9 7TF, UK
 ⁶Department of Medical Physics, University Hospital, Birmingham, Edgbaston, Birmingham, BI52TH, UK

Address correspondence to: Karen Joy Kirkby E-mail: *karen.kirkby@manchester.ac.uk*

https://doi.org/10.1259/bjr.20200247

Use of (Heavy) lons

- Tinganelli and Durante Cancers 2020, 12(10), 3022; https://doi.org/10.3390/ca ncers12103022
- Is there a clinical need?
- Cancers of unmet need'
- BUT...
- Need to reduce size and increase capability

C-ions

X-rays

- Japan: 6 centres
- China: Shanghai
- Germany: HIT; MIT (GSI He trials)
- Austria: MedAustron
- Italy: CNAO
- USA: NAPTA (led UCSF), NPTRC (led UTSW) design studies: Mayo Clinic & Hitachi to build a C centre
- Other centres proposed world-wide. A number being proposed in Europe (NIMMS, SEEIST)

Ion Therapy Research Facility – an ambition for new capabilities

HOW

- A compact, single-site national research infrastructure delivering very high dose rates and other unique (spatial and temporal features)
- Protons and beyond, at energies sufficient for both in-vitro and in-vivo studies

WORK PLAN

- Conceptual design of layout, cost and operation of a research facility
- Develop innovative laser-plasma technology, building upon world-leading expertise within the LhARA collaboration
- Develop innovative end-station designs, building on existing UK expertise in proton radiobiology research
- Collaborative agreement with CERN allows us to benefit from enormous experience and expertise in accelerator technology and successful projects

What is the Ion Therapy Research Facility?

- A medium-scale, single-site research facility c £50M envelope
- Multi-ion delivery p/He/C/N,O...
- Depth suitable for in-vitro and in-vivo studies
- High dose rate, suitable for FLASH >40 Gy/s
- Two technology choices:
 - Very high dose rate plasma/FFAG. Several novel technologies require demonstrations
 - Conventional technology likely synchrotron
- The facility must provide user research programme for future ion treatments in the UK
- The facility may act as a testbed for the required technologies for future UK Clinical Research and Treatment Facility (CTRF)
- In parallel, there are other technology developments (NIMMS etc.)

LhARA performance summary				
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon
Dose per pulse	7.1 Gy	12.8 Gy	$15.6\mathrm{Gy}$	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9$ Gy/s	$1.8 imes10^9{ m Gy/s}$	$3.8 imes 10^8$ Gy/s	$9.7 imes10^8{ m Gy/s}$
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

LhARA baseline design: https://www.frontiersin.org/articles/10.3389/fphy.2020.567738/full

ITRF Research Need:

- Ion biology not yet well understood
- Likely benefits from heavier ions
- Clinical choice will require understanding of effects in tumour and normal tissue
- Ultimately might require individual patient research

Partner/Collaborating Organisations

- STFC (BID, ASTeC*, TD*, ISIS, CLF, PPD*)
- John Adams Institute/Cockcroft Institute
- University of Birmingham*
- Imperial College (Physics*, Computing, Aeronautics, Surgery and Cancer)
- Imperial College Healthcare Trust*
- Lancaster University*
- University of Liverpool (Physics*, Sys Mol Biol)
- University of Manchester (Physics*, Cancer Sciences*)
- University of Oxford (Physics, Materials, Oncology)
- QU Belfast*
- RHUL*
- University of Surrey
- Swansea University
- UCL *
- University of Strathclyde*
- Christie Hospital
- Clatterbridge Cancer Centre
- Science and Technology Facilities Council

Daresbury Laboratory

- Institute of Cancer Research*
- Rosalind Franklin Institute
- National Physical Laboratory
- CERN
- INFN Catania
- Leo Cancer Care
- Maxeler Technologies Limited
- Corerain Technologies (China)
- Institut Curie
- Netherlands Cancer Institute
- Hampton University
- Stanford University
- Cyril & Methodius University (N Macedonia)

Neil Burnet (Adv committee chair)

Massimo Noro (Project Sponsor)

Key People:

Karen Kirkby (UMAN)

Jason Parsons (BIRM)

Amato Giaccia (Oxford)

Ken Long (Imperial) Neil Bliss (STFC)

Colin Whyte (Ustrath)

Some possible research directions

- Characterising biophysical effects of high dose rate ions cf conventional using different models.
- Assessing the impact of oxygenation on DNA damage and immune responses to different temporal and spatial patterns
- Identify the impact of genetic mutations where ion beams would be effective
- Study the impact of ultra-high dose rate and spatial forms of delivered ions using in-vivo mouse models, examining clinically relevant fractionation schedules

- Technical advantages of pulsed beams:
- Beam is flexible, accessible and with high throughput (unlike clinical facilities)
- lons delivered in very short pulses and high repetition rates – a challenge and an opportunity
- Ability to deliver p/C etc at different energies and LET
- Potential for live cell imaging

ITRF (LhARA) Pre-Conceptual Layout

LhARA performance summary				
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9$ Gy/s	$1.8 imes 10^9$ Gy/s	$3.8 imes 10^8$ Gy/s	$9.7 imes10^8{ m Gy/s}$
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

What are we offering?

Unique beams:

- Triggerable, max rate 10 Hz
- Arbitrary structures
 - E.g. pump probe
- Minimum bunch lengths:
 - 10 ns at Low-energy in-vitro end station
 - 40 ns at High-energy in-vitro and In-vivo end stations
- Dose distribution:
 - Low-energy *in-vitro* end station:
 - Quasi uniform over 3.5 x 3.5 cm²
 - Spot to be studied
 - High-energy in-vitro and In-vivo end stations:
 - Spot ~1 mm
 - Uniform distribution over circle with diameter 1—3 cm
 - Production of "more conventional" parameters to be studied

End stations must maximise scientific return:

- Extended uninterrupted operation:
 - In vitro: 16—24 hours
 - In vivo: maximum consistent with animal welfare
- Advanced, time resolved (<0.1s) instrumentation

Facilities Council Daresbury Laboratory

Vision:

Transform clinical practice of proton/ion-beam therapy by creating a fully automated, highly flexible system to harness the unique properties of laser-driven ion beams

- Present-day ion technology delivers moderate dose rates
- Recent progress in plasma acceleration techniques offer path from FLASH (c. 100 Gy/s) to 'ultra FLASH' (>10^6 Gy/s)
- Plasma/FFA acceleration also offers pathway to more compact facilities in the future – need to examine this
- UK is world-leading in plasma acceleration and FFAs.
- Like AI, plasma accelerators are 'on the cusp'
- BUT: can we make a match with our user community?

What do we need?

- Input and collaboration!
- 6 months into our 2-year preliminary activity
 - Seeking to engage more with possible users
 - Define experimental needs, including dosimetry and
 - Match 'user pull' with 'technology push'
 - Understand the sample handling and regulatory issues ready for the next stage
- CDR > TDR > construction; 7 years
- Help to define our experimental programme at the 2nd peer-group consultation: <u>https://indico.stfc.ac.uk/event/780/</u> (University of Birmingham)

Parameter	Value or range	Unit	
Laser driven proton and ion source			
Laser power	100	TW	
Laser energy	2.5	J	
Laser pulse length	25	fs	
Laser rep. rate	10	Hz	
Required maximum proton energy	15	MeV	
Proton and ion capture			
Beam divergence to be captured	50	mrad	
Gabor lens effective length	0.857	m	
Gabor lens length (end-flange to end-flange)	1.157	m	
Gabor lens cathode radius	0.0365	m	
Gabor lens maximum voltage	65	kV	
Number of Gabor lenses	2		
Alternative technology: solenoid length	1.157	m	
Alternative technology: solenoid max field strength	1.3	Т	
Stage 1 beam transport: matching and energy selection, beam delivery to low-energy end station			
Number of Gabor lenses	3		
Number of re-bunching cavities	2		
Number of collimators for energy selection	1		
Arc bending angle	90	Degrees	
Number of bending magnets	2		
Number of quadrupoles in the arc	6		
Alternative technology: solenoid length	1.157	m	
Alternative technology: solenoid max field strength (to serve the injection line to the Stage 2)	0.8 (1.4)	Т	

https://www.frontiersin.org/articles/10.3389/fphy.2020.567738/full

Daresbury Laboratory

Science and

Technology Facilities Council

LhARA Stage 1

Laser Driven Proton & Ion Sources

- TNSA (Target Normal Sheath Acceleration) is basis
 for particle production
- Target and capture both elements of study in ITRF programme
- UK has world-leading research groups in this area
 - Including holding the world record for laserproduced proton energy
- Significant installed infrastructure across several UK labs able to be used to progress the understanding and design of the ion source.

LhARA Stage 2

Stage 2 beam transport: FFA, transfer line, beam delivery to high-energy end stations

	Number of bending magnets in the injection line	7	
	Number of quadrupoles in the injection line	10	
	FFA: Machine type	single spiral scaling FFA	
	FFA: Extraction energy	15-127	MeV
	FFA: Number of cells	10	
	FFA: Orbit R _{min}	2.92	m
	FFA: Orbit R _{max}	3.48	m
	FFA: Orbit excursion	0.56	m
F	FFA: External R	4	m
/	FFA: Number of RF cavities	2	
	FFA: RF frequency	1.46-6.48	MHz
•	FFA: harmonic number	1, 2 or 4	
	FFA: RF voltage (for 2 cavities)	4	kV
	FFA: spiral angle	48.7	Degrees
	FFA: Max B field	1.4	Т
	FFA: k	5.33	
	FFA: Magnet packing factor	0.34	
	FFA: Magnet opening angle	12.24	degrees
	FFA: Magnet gap	0.047	m
	FFA: Ring tune (x,y)	(2.83, 1.22)	
	FFA: γ ₇	2.516	
	FFA: Number of kickers	2	
	FFA: Number of septa	2	
	Number of bending magnets in the extraction line	2	
	Number of quadrupoles in the extraction line	8	
	Vertical arc bending angle	90	Degrees
	Number of bending magnets in the vertical arc	2	
	Number of quadrupoles in the vertical arc	6	
	Number of cavities for longitudinal phase space manipulation	5	
	Number of quadrupoles in the in vivo beam line	4	

https://www.frontiersin.org/articles/10.3389/fphy.2020.567738/full

Kicker Magnet

In vitro and In vivo Parameters (LhARA)

- Three biological end stations (two in vitro and one in vivo)
 - Low energy in vitro proton beams between 12 15 MeV
 - High energy in vitro proton beams between 15 127 MeV ion beams (including C6+) up to 33 MeV/u
 - High energy in vivo proton beams between 15 127 MeV ion beams (including C6+) up to 33 MeV/u
- Two in vitro end stations high and low energy
 - Located within a state-of-the-art laboratory, fully equipped with various work spaces
 - Irradiation of a wide range of biological models (2D cell monolayers and 3D spheroids/patient-derived organoids)
 - Investigate a myriad of biological end points (clonogenic survival, spheroid/organoid growth, angiogenesis, inflammation)
 - Additional capabilities include hypoxia studies (0.1 1 % oxygen) and highthroughput screening (compound drug libraries, siRNA/CRISPR- Cas9)
- One high energy in vivo end station
 - Located on the ground floor in the accelerator complex

Parameter Value or Unit range

Stage 2 beam transport: FFA, transfer line, beam delivery to high-energy end stations continued

In vitro biological end stations			
Maximum input beam diameter	1–3	cm	
Beam energy spread (full width)	Low-energy end station: ≤ 4	%	
	High-energy end station: ≤ 1	%	
Input beam uniformity	<5	%	
Scintillating fiber layer thickness	0.25	mm	
Air gap length	5	mm	
Cell culture plate thickness	1.3	mm	
Cell layer thickness	0.03	mm	
Number of end stations	2		
In vivo biological end station			
Maximum input beam diameter	1–3	cm	
Beam energy spread (full width)	≤1		%
Input beam uniformity	<5		%
Beam options	Spot-		
	scanning,		
	passive		
	scattering,		
	micro-beam		

https://www.frontiersin.org/articles/10.3389/fphy.2020.567738/full

Visualising ITRF

Daresbury Laboratory

(STFC-TD Engineering)

Building Concept Design showing the Research Area on the 1st floor

Read More about ITRF/LhARA

- https://doi.org/10.1259/bjr.20200247
- <u>https://www.frontiersin.org/articles/10.3389/fphy.</u> 2020.567738/full
- IPAC'23 (<u>https://www.ipac23.org/preproc/index.html</u>):
 - MOPL176, TUPA060, THPL106, THPM066, THPM083

Thanks to:

- Many collaborators
- UKRI for funding of Preliminary Activity

Daresbury Laboratory

Superior Dose Depth Distribution & Physical Beam Characteristics

> -Higher LET -Superior RBE -Low OER -Narrow penumbra

Physics -Beam characterization -Beam heterogeneity

Radiobiological Research

-Carbon ion interaction with diff tiss

- -Metabolism
- -Microenvironment

-CSCs

Engineering -Gantry design -Miniaturization

Material Science

-Target Production -Substance lighter than concrete, but just as effective

Increasing the Patient Experience

-New Lhara Ion therapy -Less toxicity -Given in short period of time -Cost effectiveness research

Clinical Biology Research

Dose limitations
Toxicity
Which tumor histologies benefit most
Does it overcome tumor microenvironment
Development of new clinical trial design

Clinical Physics Research

-Dose and treatment planning -Development of IMCT -Absorbed Dose Calculations -Modeling RBE

STFC/UKRI/ITRF

-Beam Production -Beam Delivery -Accelerator miniaturization -Active and Passive Beam Shaping

multidisciplinary programme

Imaging

-Positron imaging

-Dose distribution

-Ionacoustic Imaging

ience