

Laser-hybrid Accelerator for Radiobiological Applications (LhARA)

N. P. Dover on behalf of K. Long (Imperial College London)

Acknowledgements:

- E. Boella (Lancaster)
- R. Gray (Strathclyde)
- W. Shields (Royal Holloway)
- T. Dascalu, J. Pasternak (Imperial)
- ... and the rest of the LhARA consortium

SPIE Optics & Optoelectronics 2023 24-27th April 2023

The case for LhARA

Growing global requirement for RT

- Scale up in provision is essential
- Development of new technologies and cost effective systems

Systematic study of the radiology of ion beams

- Accurate treatment planning relies on RBE
- For ions, uncertainty due to many factors:
 - Energy, dose, dose rate, dose spatial distribution, ion species...

Novel beams for radiobiology

- Therapeutic benefits for ultrahigh dose rates ("FLASH" RT) and microbeam therapy
- Requires extensive further study both *in vitro* and *in vivo*

Towards a novel facility to answer critical questions in radiobiology

In combination with chemo/immuno therapy

<u>Goals:</u>

- Deliver a systematic and definitive radiobiology programme
- Lay the foundation for transformative, highly automated and patient specific ion beam therapy

The LhARA consortium

The LhARA approach

A novel laser-hybrid approach

- Laser-driven high-flux proton/ion source
 - Overcome instantaneous dose-rate limitations
 - Proton/ion bunches as short as 10-40 ns
 - Triggerable
- Electron-plasma lenses for capture and beam focusing
 - Short focal length without the use of high field solenoids

Fast post acceleration with an FFA

- Variable energy:
 - ➡Protons 15-127 MeV
 - ➡lons 5-34 MeV/u

Conceptual design for LhARA: Aymar et al. Frontiers in Physics 8, 567738 (2020)

Laser driven ion source for LhARA

central aser facility

- Minimised space charge issues, enabling high peak current
- Needs to operate at 10 Hz for long periods
- Aiming to deliver 10⁹ protons or 10⁸ carbon ions per shot, eventually other ions
- Initially tape targets, but developing other options, e.g. water jet

Full 3D Particle-in-Cell simulations of LhARA laser-driven ion source

Simulations by Elisabetta Boella

With no preplasma, only relatively thin targets achieve LhARA target energy

Proton cutoff energy vs time for different target thicknesses

t [ps] [™] — 6 μm — 4 μm — 2 μm — I μm

2 μ m thick target, L_g = 0 μ m

Simulations by Elisabetta Boella

Optimising preplasma enables doses close to requirements with thicker targets

Proton cutoff energy vs time for 6 μ m thick targets with pre-plasma scale-lengths

Simulations by Elisabetta Boella

Experimental R&D programme

SCAPA 8 L 25 fs at 5 Hz repetition rate up to ~10²⁰ W/cm²

- Initial ion source experiments performed at SCAPA using tape drive - see talk by M. Alderton - Wed 2.20 in Tycho
- LhARA dedicated beamline planned for July 2023 for parametric source optimisation
- Diagnostic & hardware development ongoing

University of

Strathclyde

Experimental R&D programme for LhARA ion source - Zhi laser

- Development of high repetition ion acceleration facility at ICL
 - Driven by in-house 100 Hz, ~100 mJ, 40 fs laser, to address issues related to high repetition rate
 - High repetition ion source commissioning experiments have now begun

Ion capture and focused obtained using innovative Gabor lenses

- Focus in both planes simultaneously
- Can operate continuously
- Energy-dependent focusing strength
- Easily tunable focusing power
- Cost effective solenoid alternative requires orders of magnitude lower B-field than equivalent solenoid

Ion capture and focused obtained using innovative Gabor lenses

LhARA Stage 2 - higher ion energies

- Fixed-field alternating-gradient accelerator (FFA):
 - Compact, flexible solution:
 - Multiple ion species
 - Variable energy extraction
 - High repetition rate (rapid acceleration)
 - Large acceptance
 - Successfully demonstrated:
 - Proof of principle at KEK
 - Machines at KURNS
 - Non-scaling PofP EMMA (DL)
- Up to 127 MeV protons, 33 MeV/u C
- Delivery to *in vitro* and *in vivo* end stations currently being investigated

Predictions for final beam delivery

	12 MeV protons	15 MeV protons	127 MeV protons	33.4 MeV/u carbon
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy
Instantaneous dose rate	$1.0 \times 10^9 \text{Gy/s}$	$1.8 \times 10^9 \mathrm{Gy/s}$	$3.8 \times 10^8 \text{Gy/s}$	$9.7 imes 10^8$ Gy/s
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

These estimates are based on Monte Carlo simulations using a bunch length of 7 ns for 12 and 15 MeV proton beams, 41.5 ns for the 127 MeV proton beam and 75.2 ns for the 33.4 MeV/u carbon beam. The average dose rate is based on the 10 Hz repetition rate of the laser source.

- Stage 1 delivery of protons has been designed using realistic source parameters to deliver ~cm scale beam
- Deliverable dose rates are sufficient for FLASH radiobiology studies

• Working towards completion of Conceptual Design Review in 2024

	2022 2023			2	2024			202	2025			2026			2027			20	2028			2029			2	2030			2031								
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1 0	22 Q3	3 Q4	Q1	Q2	Q3	Q4	Q1 0	Q2 Q	3 Q4	Q1	Q2	Q3 (Q4 Q2	1 Q2	2 Q3	3 Q4	Q1	Q2	Q3 (Q4 (Q1 0	Q2 (Q3 Q	4 Q1	Q2	Q3	Q4 (21	
Preliminary Activity (PA)]]]												
Preconstruction programme																					ĺ				}									}			
Facility construction											[St	age	1								Sta	ge 2									
Facility exploitation																		}																			
	W	/h	er	e	w	е	ar	е																												1	9
															Medi	ical					ക																

Research Council

ICR The Institute of Cancer Research ø

Imperial College

Summary

- LhARA will serve the radiobiology community using a laser-hybrid approach
 - Overcome dose-rate limitations of present and ion beam therapy sources
 - Deliver a range of ion species, energies, dose, dose-rate and time and spatial distribution
 - Used in an automated, triggerable system
- The LhARA collaboration working with the ITRF to develop a Conceptual Design Review and do mission critical R&D
 - Prove the novel laser-hybrid system in operation
 - Design a facility capable of delivering broad radiation biology programme
 - Create the novel capabilities required to transform proton and ion therapy

