Design and Integration of the Laserhybrid Accelerator for Radiobiological Applications (LhARA)

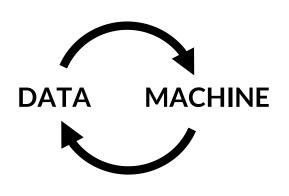
William Shields

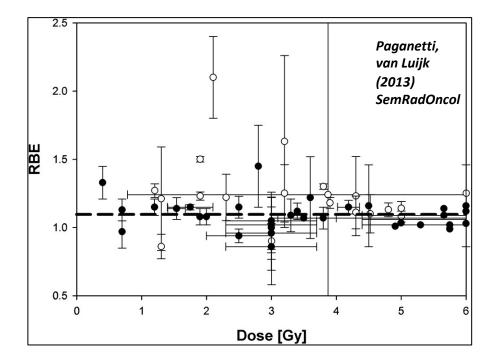
On behalf of the LhARA Collaboration

william.shields@rhul.ac.uk

PPRIG 2023

10th November 2023





The Case for LhARA

- Growing particle therapy demand
 - Improve availability & accessibility with new & cost-effective technologies
- Systematic study of the radiobiology of proton & ion beams
 - Uncertainties due to:
 - Energy, ion species, dose, spatial distribution, dose rate, tissue type, biological endpoint
 - RBE variation
 - Proton treatment planning RBE = 1.1
 - Ion RBE even higher

- Novel treatment modalities
 - Ultra-high dose rates: FLASH
 - Spatially fractionated mini-beams
- LhARA: a dedicated radiobiology research facility

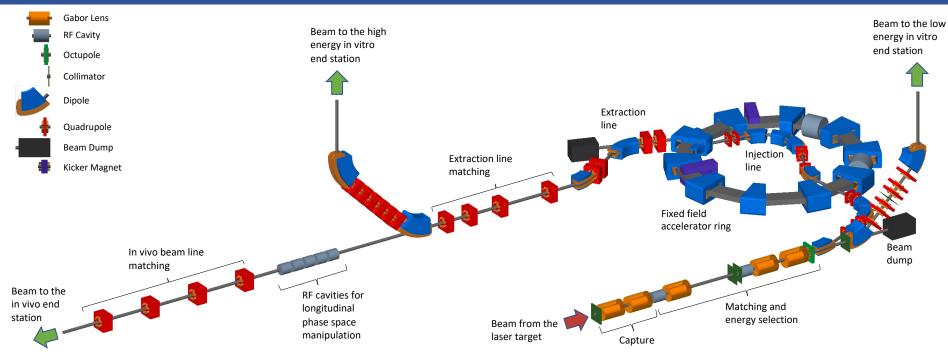
ROYAL HOLLOWAY

The LhARA Collaboration

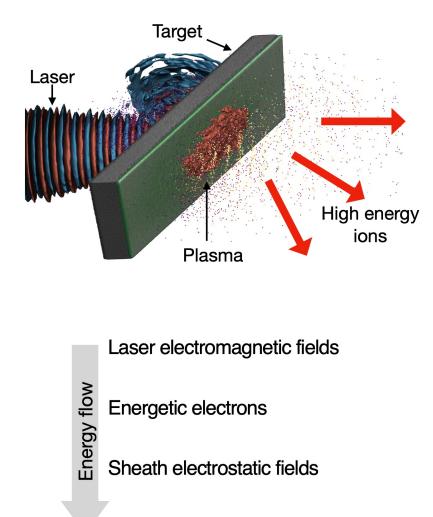
- Deliver a systematic and definitive radiobiology programme
- Prove the feasibility of the laser-driven hybrid-accelerator approach
- Lay the technological foundations for the transformation of PBT

LhARA & ITRF

- £2M UKRI Infrastructure Fund grant establishment of Ion Therapy Research Facility (ITRF)
 - Compact, single-site national research facility
 - 2 year "Preliminary Activity 1" phase
 - 3 year preliminary activity 2 phase (pre-construction) awaiting funding decision
 - Facility CDR by October 2024
- LhARA to serve ITRF
 - Conventional technology study (NIMMS)
 - Synchrotron & injector from established ion sources & acceleration methods
- Outreach & engagement
 - Users, Patient and Public Involvement
 - Website


					LOLL			2020			2021
				Half 2, 20		Half 1, 2023	Half		Half 1, 2024	Half 2,	
Task Name	👻 Work Package 🖣	🖌 Start 🚽	Finish 🚽	JJASO	N D J	FMAM	JJAS	OND	JFMAM	JJAS	O N D
⁴ LhARA Project		Sat 01/10/22	Mon 01/11/27								
WP1 Project Management	WP1	Sat 01/10/22	Thu 30/09/27								
Project Deliverables	WP1	Sat 01/10/22	Thu 19/09/24								
▷ Tasks	WP1	Sat 01/10/22	Thu 30/09/27	-							
▷ WP2 Source	WP2	Sat 01/10/22	Fri 01/10/27								
WP3 Proton and ion capture	WP3	Sat 01/10/22	Thu 30/09/27								
WP4 Ion-acoustic	WP4	Sat 01/10/22	Thu 30/09/27								
WP5 Novel End station Development	WP5	Sat 01/10/22	Fri 01/10/27								
WP6 System design	WP6	Mon 03/10/22	Thu 30/09/27								

The LhARA Accelerator

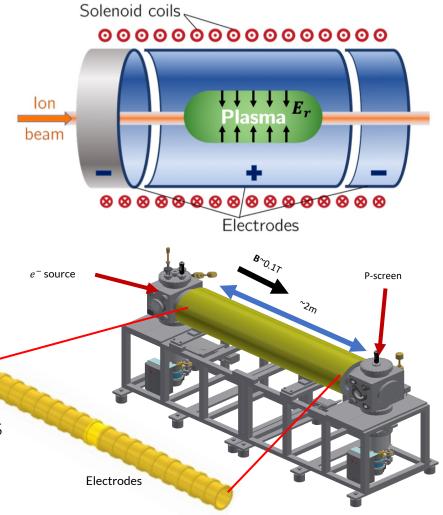


Pre-conceptual design report (pre-CDR) publication: Aymar, G. et al, Frontiers in Physics, (8), September 2020, 567738 LhARA baseline design technical note: <u>https://ccap.hep.ph.ic.ac.uk/trac/raw-</u> <u>attachment/wiki/Communication/Notes/CCAP-TN-11-LhARA-Design-</u> <u>Baseline.pdf</u>

LhARA performance summary										
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon						
Dose per pulse	7.1 Gy	12.8 Gy	$15.6\mathrm{Gy}$	73.0 Gy						
Instantaneous dose rate	$1.0 imes10^9{ m Gy/s}$	$1.8 imes10^9{ m Gy/s}$	$3.8 imes10^8{ m Gy/s}$	$9.7 imes10^8{ m Gy/s}$						
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s						

Laser-driven Proton & Ion Source

- High intensity laser driven ion sources:
 - 100 TW, high instantaneous dose rate
 - 10-40 ns bunches
 - Triggerable; arbitrary pulse structure
 - High energy from source (up to ~100 MeV)
- Proton & ion source prediction
 - 3D TNSA simulations
 - SCAPA facility & experimental beam time
- Identify LhARA facility laser-target requirements
 - Generation of proton (15 MeV) and carbon (4 MeV/u) beams using existing "tape" targets
 - 10 Hz operation
 - Understanding of debris & stabilisation schemes


Accelerated surface ions

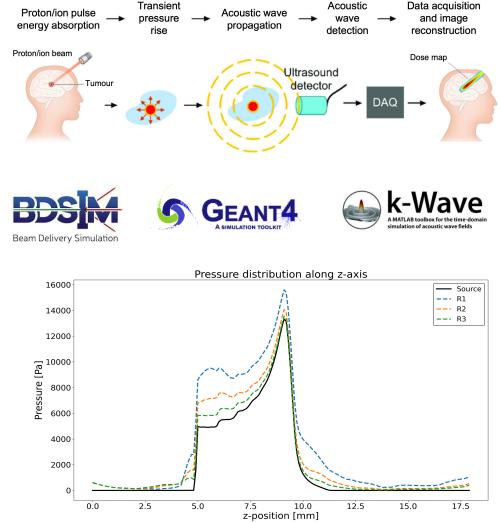
ROYAL HOLLOWAY

Proton & Ion Capture

Liser-hybrid Accelerator for Radiobiological Applications

- Novel Gabor electron-plasma-lens
 - Capture & focusing
 - Solenoid-like strong focusing without high power, high-field magnet
 - Radial focussing in both planes simultaneously
 - Energy-dependent focusing strength
- Develop a detailed design of the next generation Gabor-lens prototype
- Experimental setup at Swansea University
 - Electron-plasma dynamics measurements
 - Bench-mark simulations
 - VSim & WarpX

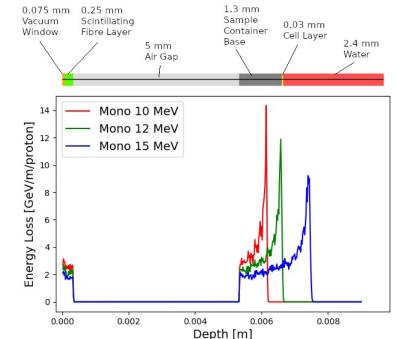
Ion-Acoustic Dose Mapping



In-vivo, real-time, non-invasive range verification system

- 3D Bragg peak localisation with sub-mm accuracy
- Dose profile distribution measured pulse-by-pulse
- Beam induced thermoelastic expansion
 - Increase in pressure acoustic wave (thermoacoustic effect)
 - Ultrasound detector
 - Iterative image reconstruction
- Design proof of principle experiment
 - Geant4 MC simulation
 - K-wave acoustic model

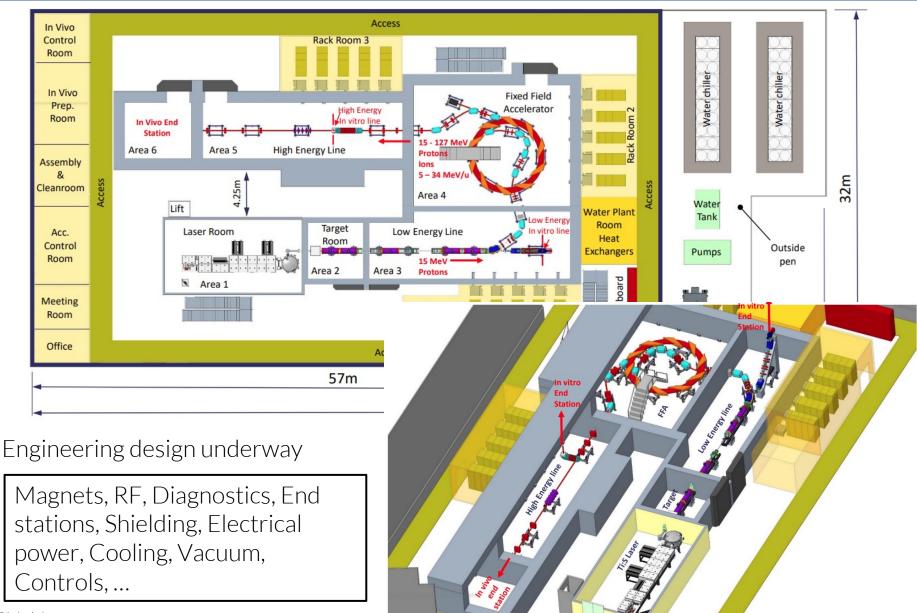
W. Shields


- LION beamline at CALA (LMU Munich)
 - BDSIM modelling of experimental setup

LhARA End Stations

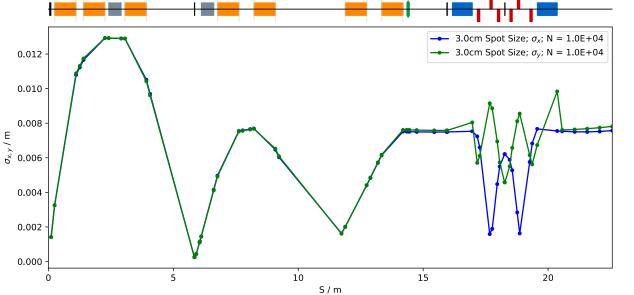
- Develop definitive programme of in-vitro and in-vivo radiation biology
 - Full specification for the in-vitro and in-vivo end stations in development
- Instrumentation and diagnostic specifications for beam characterisation
 - Scintillating-fibre detector (SciWire)
 - Gas jet beam profiler
- Automation
 - Cell-culture handling systems and appropriately automated in-vivo end station systems
 - Extended, high throughput operation
 - Programmable to match beam
- Control and reproducibility
 - Variable control of atmosphere
 - Pulse-by-pulse dosimetry validation
 - Acoustic imaging (in-vivo)
 - Cellular imaging (in-vitro)

- Birmingham MC40 cyclotron operation
 - Instrumentation testing


- Peer group consultation meetings
 - Next meeting coming soon
 - https://indico.stfc.ac.uk/event/923/

ROYAL HOLLOWAY

LhARA Facility Infrastructure

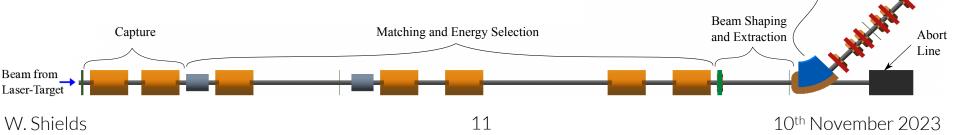


W. Shields

-

LhARA Stage 1

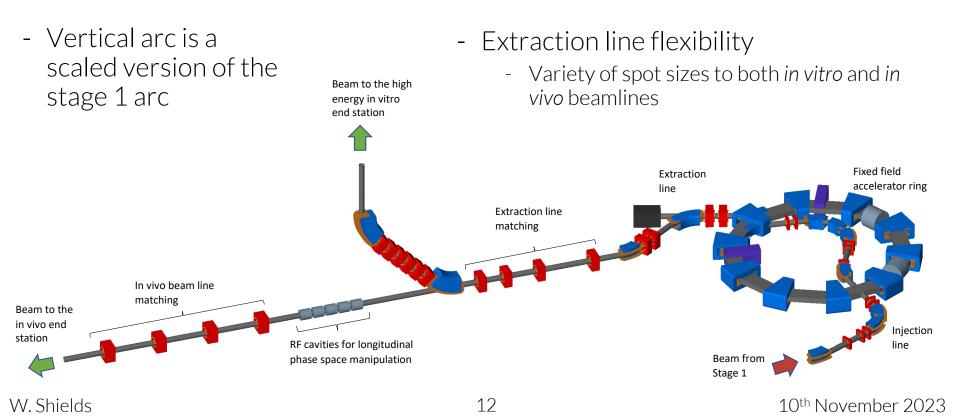
 Conceptual design of the LhARA facility, the accelerator systems, and their integration with the end stations


10⁹ protons per pulse

10000 macroparticles in Monte Carlo tacking studies

Vertical Matching Arc

Beam to *in vitro* End Station


- SCAPA beam from TNSA PIC simulations
- Spot size flexibility 1.0 to 3.0 cm
- Optimised to mitigate space charge.
- Uniform transverse beam profile, 2% energy spread

LhARA Stage 2

- Injection line, FFA ring, extraction line, 2 end stations
- FFA offers acceleration to 127 MeV (protons) and 33.4 MeV/u (carbon)
 - Preservation of short bunch time structures
 - Ongoing redesign to accommodate shielding & improve flexibility

- LhARA will serve the radiobiology community using a laserhybrid approach
 - Overcome dose-rate limitations of current and proton & ion therapy sources.
 - Offer unparalleled flexibility by deliver a range of ion species, energies, dose, dose-rate and time and spatial distributions.
- The LhARA and ITRF "Preliminary Activity " programme is underway!
 - Prove technical feasibility of novel accelerator technologies.
 - Develop & deliver a broad radiation biology programme.
 - Create the capability to transform proton and ion therapy.

william.shields@rhul.ac.uk