Issues with the initial distribution

J. Pasternak, WP2&WP6 meeting, 29/11/2022

Introduction

Discrepancy between pre-CDR and 2D PIC (Smilei) by HT

Parameter	Ideal Beam	Sampled Beam
$\beta_x [\mathbf{m}]$ α_x $\epsilon_x [\mathbf{m} \text{ rad}]$	5.4 ± 0.1 -56.0 ± 0.4 $(2.3 \pm 0.03) \times 10^{-7}$	145.4 ± 0.7 -1458.6 ± 6.8 $(1.4 \pm 0.008) \times 10^{-8}$
$\begin{array}{c} \beta_y [\mathrm{m}] \\ \alpha_y \\ \epsilon_y [\mathrm{m \ rad}] \end{array}$	5.3 ± 0.1 -55.2 ± 0.4 $(2.4 \pm 0.03) \times 10^{-7}$	149.1 ± 0.8 -1496.3 ± 8.4 $(1.3 \pm 0.008) \times 10^{-8}$
	Estimate w/o SC shows that these parameters are NOT compatible with the nozzle dimensions	Estimate w/o SC shows that these parameters are compatible with the nozzle dimensions (at 3σ at the entrance and 2σ at exit). Max angular acceptance: $28 \text{mrad} (2\sigma)$.

"Ancient" parameters

Parameter	Value	Units
Total length	15.58	m
Length w/o arc	11.58	m
Rep. rate	10	Hz
Initial pulse du-	35	fs
ration (FWHM)		
Beam spot size	4	um
at the target		
(FWHM)		
Physical emit-	0.021	π .mm.mrad
tance (rms)		
Proton energy	12-15	MeV
range		
Final energy	$\pm 2\%$	-
spread		
Mean dose rate	2	Gy/min
Final spot size	1-15	mm
(total diameter)		
Final bunch in-	10 ⁶ -10 ⁸	-
tensity		

Estimated
assuming max
angular
acceptance of
±25mrad.
This beam is
compatible with
the nozzle.

In estimation of the beam parameters we assume:

- Motion in drift w/o SC for the first 5 cm from the target (beam fully neutral)
- Motion of the distribution for the ideal beam with full SC (pure proton beam)
- This procedure is far from ideal

Please comment on our assumptions! We need to decide on the "working parameters" for our work in WP6!

Questions

- What information can we gain from the available 3D distribution (from SCAPA):
 - What are the laser parameters and nominal proton beam?
 - What particle species are included (protons, electrons, other ions)?
 - Can we have full distribution of those species?
 - Is there a longitudinal information?
- What differences are we expecting for the LhARA case?
- When do we expect 3D PIC simulations for the LhARA case?