LhARA Source & Capture Design & Integration Meeting

13th Jan 2023 Christopher Baker (on behalf of WP1.3)

Agenda

• Constraints

- 1. Physical
- 2. Vacuum
- 3. Magnetic Field
- 4. Desirable Changes

Agenda

- Constraints
 - 1. Physical
 - 2. Vacuum
 - 3. Magnetic Field
 - 4. Desirable Changes
- As the Gabor lens is yet to begin the initial design phase
 - We expect a great deal of flexibility
 - We expect changes as the experimental campaign produces results (2026!?)

Proposed Apparatus (preconstruction phase)

4

1a. Physical constraints (size)

- Increasing the acceptance implies increasing plasma radius
- Increasing plasma radius increases charge
- Increasing plasma radius increases space-charge & corresponding confinement voltages: $n=5x10^{15}m^{-3}$, L=0.8 m, $r_p=3$ cm, $r_w=10$ cm, $\phi\sim70kV$, N $\sim1x10^{13}$ $n=5x10^{15}m^{-3}$, L=0.8 m, $r_p=6$ cm, $r_w=18$ cm, $\phi\sim260kV$, N $\sim5x10^{13}$ $n=5x10^{15}m^{-3}$, L=0.8 m, $r_p=10$ cm, $r_w=30$ cm, $\phi\sim720kV$, N $\sim1x10^{14}$ $n=5x10^{15}m^{-3}$, L=0.8 m, $r_p=10$ cm, $r_w=15$ cm, $\phi\sim410kV$, N $\sim1x10^{14}$

1b. Physical constraints (positioning)

• Presence of uncontrolled / grounded surfaces is bad for plasma confinement

2. Vacuum constraints

- In general, increasing pressure decreases plasma confinement time so non-neutral plasmas typically operate in UHV regime (<10⁻⁸ mbar)
 - See e.g. Chao [Phys. Plasmas 7831 (2000)] or Malmberg & Driscoll [PRL 44 654 (1980)] ...
- However, we expect to use Rotating Wall so collisional cooling *might* be beneficial
 - e.g. In low B-field using e^+ , SF₆ at 10⁻⁶ mbar is required
 - Depends upon background gases...
 - Limited information as such e⁻ systems use radiative cooling from Tesla-level SC magnets
 - Most commonly deleterious
- Large (r=10cm) electrodes provides very high conductance
- Some non-neutral plasma apparatus use electrodes at cryogenic temperatures...

3. Magnetic field (0.1 T)

- Increasing the acceptance implies increasing plasma radius
- Increasing plasma radius increases electrode radius*
- Increasing electrode radius increases vacuum chamber & magnet radius
- Increasing magnet radius increases manufacture and running costs
 - Wire length scales ~linearly with radius, power scales ~linear with wire length
 - Increasing magnet radius by 30% likely increases costs by ~30+%
- If required, B-field shielding of source likely more difficult (while maintaining transport efficiency)

* Currently an outstanding experimental question

4. Desirable changes

- Increasing B-field provides better confinement
 - Confinement & cooling times scale favourably as B²
 - Due to costs, a smaller radius solenoid would be beneficial to achieve this