WP6: Design & Integration

William Shields

(william.shields@rhul.ac.uk)

LhARA Collaboration Meeting #3

08th February 2023

Outline

- CAD model workflow
- Baseline changes
- Matching with space charge
- Review of the initial distribution
- Rematching with SCAPA simulated distribution
- Next steps

CAD Model Workflow

Liser-hybrid Accelerator for Radiobiological Applications

- Automatic generation of spreadsheet containing component surveys
- Generated from BDSIM model
- Matches
 component
 naming
 scheme

lor	ne In	sert Dra	w Pagel	Layout	Formula	s Data Review	View	Automa	te 🔉 Tell me				다 Comments 년 SI
Ê	X	Calibri	(Body)	~ 11	✓ A [^]	Aĭ = = =	* ~	ab v	General	-	∃	/v 🔠 Insert v	$\Sigma \cdot A_{\nabla} \cdot \bigcirc \cdot$
Pa	ste	V P T			Δ	. = = =		E	rm 0/ ● (€	0 .00 Condi	tional Format Ce		Sort & Find & Analyse
	4	D 1	<u>o</u> •	<u> </u>	× • <u>–</u> •	· = = =	<u></u>	÷	⊻ ⊟ ▼ 70 ⊅ :	00 →0 Forma	atting as Table Styl	es 📄 Format 🔻	🖌 🎸 Y Filter Select Data
31	\$	XV	fx										
1	A	В	С	D	F	F		G	н		1	к	L
ŀ		0	-		_								
H	0	STAGELINVE		ontlict									
H	1	Document N	ame lbara-v1		nent coordi	nates							
H	2	8/12/2022	ame. mara-v.	compo	inem coordi	lates							
h	3	Notes: Units	= mm										
F		Section	- 1111. X	v	7	Component Position	Compor	ont Namo	Component Type	Aperture Type	Hor Half Aperture	Ver Half Aperture	Comments
h	0	TR	<u> </u>		-100.000	Start	THA TR VAC	DRI 00	drift	circular	50.000	50.000	connients
E	1	TR	0	0	-75.000	Middle	THA TR VAC	_DRI_00	drift	circular	50.000	50.000	
F	2	TR	0	0	-50 000	End	THA TR VAC	DRI 00	drift	circular	50.000	50.000	
F	3	TR	0	0	-50.000	Start	THA TR DIA	COL 01	ecol	circular	2 870	50.000	
h	4	TR	0	0	-25 000	Middle			ecol	circular	3 305	3 305	
h	5	TR	0	0	25.000	End		COL 01	ecol	circular	2 000	2 000	
h	6	TR	0	0		Start		DRI 01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
F	7	TR	0	0	5 000	Middle		DRI 01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
F	8	TR	0	0	150,000	End		DRI 01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
E	9	TR	0	0	150,000	Start		5 501 01	solenoid	circular	50.000	50.000	neserved for Gabor cens physical length
h	10	TR	0	0	578 500	Middle		5 501 01	solenoid	circular	50.000	50.000	
F	11	TR	0	0	1007.000	End		S SOL 01	solenoid	circular	50.000	50.000	
h	12	TR	0	0	1007.000	Start	THA TR VAC	DRI 02	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
h	13	TR	0	0	1082 000	Middle	THA TR VAC	DRI 02	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
h	14	TR	0	0	1157 000	End		DRI 02	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
E	15	TR	0	0	1157 000	Start	THA TR VAC	DRI 03	drift	circular	50,000	50,000	Reserved for Gabor Lens physical length
E	16	TR	0	0	1232 000	Middle	THA TR VAC	DRI 03	drift	circular	50,000	50,000	Reserved for Gabor Lens physical length
h	17	TR	0	0	1307.000	End	LHA TR VAC	DRI 03	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
h	18	TR	0	0	1307.000	Start	LHA TR MA	5 SOL 02	solenoid	circular	50.000	50.000	
F	19	TR	0	0	1735.500	Middle	LHA TR MA	SOL 02	solenoid	circular	50.000	50.000	
F	20	TR	0	0	2164.000	End	LHA TR MA	5 SOL 02	solenoid	circular	50.000	50.000	
h	21	TR	0	0	2164.000	Start	LHA TR VAC	DRI 04	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
F	22	TR	0	0	2239.000	Middle	LHA TR VAC	DRI 04	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
F	23	TR	0	0	2314.000	End	LHA TR VAC	DRI 04	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
F	24	LEL	0	0	2314.000	Start	LHA LEL HR	CAV 01	cavity pillbox	circular	50.000	50.000	p,
h	25	LEL	0	0	2564.000	Middle	LHA LEL HRI	CAV 01	cavity pillbox	circular	50.000	50.000	
E	26	LEL	0	0	2814.000	End	LHA LEL HRI	CAV 01	cavity_pillbox	circular	50.000	50.000	
	27	LEL	0	0	2814.000	Start	LHA_LEL_VAG		drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
1	28	LEL	0	0	2889.000	Middle	LHA_LEL_VAG		drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
F				1051400	DT	TACETINIECTION	CTAOFOAT		STACEODING (CTA OF OIL MAN		
1		STAGE HINVIT	51	AGEIADU		AGETINGEOTION	J TAGEZAE		O IAGEZNING 3	AGEZINVITRO	SIAGEZINVIV	T	

- Model zero position:
 - Centre of exit plane of target housing flange

Component Strengths

- Automatic generation of component strengths spreadsheet
- Generated from BDSIM model
- Matches component naming scheme

Hom	e Inse	ert Drav	Page Lavout	Formulas Data Rev	view View Au	utomate	○ Tell me					Com	ments le	Sh:
~						Le	ų ·····							
P	<u>،</u> ۱	Calibri	(Body) ~ 11	- A^ A ≡ ≡ :	= 🧞 🖌 🧯	} •	General v	J 📕 🖌 🗍	~	En In	sert v	* ? ?~,	Q• F	
Past	:e	BI			=	- R	≈ ~ % 9 €8	Conditional For	mat Cell		elete V	Sort & F	Find & A	naly
	 ✓ 							Formatting as Ta	able Styles	E FO	ormat 🗸 🛛 🖴	Y Filter S	Select	Data
1	÷.	\times \checkmark :	fx											
	А	В	С	D	E	F	G	н	1	J	К	L	М	
L T		0												
2	0	STAGE1IN\	/ITRO Component List											
	1	Document	Name: lhara-v1.0 EM	Component Strengths										
F .	2	8/12/2022												
	3	Notes: Len	gth units = mm											
5	4	Drifts t	emporarily named LHA	_DDD_VAC_DRI_XX until re	placed by other device	ces								
·		Section	Cumulative Length	Component Name	Component Type	Length	Strength Parameter(s)	Strength Value(s)	Unit(s)	Tilt	Comments			
	0	TR	-0.050	LHA_TR_VAC_DRI_00	drift	0.050								
	1	TR	0.000	LHA_TR_DIA_COL_01	ecol	0.050								
	2	TR	0.150	LHA_TR_VAC_DRI_01	drift	0.150		_			Reserved fo	r Gabor Lens p	physical lengt	th
L	3	TR	1.007	LHA_TR_MAG_SOL_01	solenoid	0.857	ks	2.290287	m^-1					
2	4	TR	1.157	LHA_TR_VAC_DRI_02	drift	0.150					Reserved fo	r Gabor Lens p	physical lengt	th
-	5	TR	1.307	LHA_TR_VAC_DRI_03	drift	0.150		_			Reserved fo	r Gabor Lens p	physical lengt	th
1	6	TR	2.164	LHA_TR_MAG_SOL_02	solenoid	0.857	ks	1.187325	m^-1					
-	7	TR	2.314	LHA_TR_VAC_DRI_04	drift	0.150					Reserved fo	r Gabor Lens p	physical lengt	th
-	8	LEL	2.814	LHA_LEL_HRF_CAV_01	cavity_pillbox	0.500	efield	0.000000	v					
_	9	LEL	2.964	LHA_LEL_VAC_DRI_01	drift	0.150					Reserved fo	r Gabor Lens p	hysical lengt	th
3	10	LEL	3.821	LHA_LEL_MAG_SOL_01	solenoid	0.857	ks	1.305670	m^-1					
-	11	LEL	3.971	LHA_LEL_VAC_DRI_02	drift	0.150					Reserved fo	r Gabor Lens p	hysical lengt	th
	12	LEL	5.746	LHA_LEL_VAC_DRI_03	drift	1.775								
-	13		5.756	LHA_LEL_DIA_COL_01	ecol	0.010					Collimator fo	or stage 1 ope	ration	
	14		5.821	LHA_LEL_VAC_DRI_04	ariit	0.065								
-	15		5.950	LHA_LEL_VAC_DRI_05	ariit	0.135					Collimator f	ar stage 2 cm	ration	
*	17		6.021		drift	0.010					commator to	n stage z ope	ration	
5	18	IFI	6 521	THA LEL HRE CAV 02	cavity nillbox	0.500	efield	0 000000	v					
-	19	IFI	6 671	THA LEE VAC DRI 07	drift	0.150	enerd	0.00000	•		Reserved for	Gabor Lens r	hysical leng	th
2	20	IFI	7 528	THA LEL MAG SOL 02	solenoid	0.857	ks	2 504240	m^-1		ineserved IU	Gabor Lefts p	ingsical leftgi	an
-	21	IFI	7 678	THA IEL VAC DRI 08	drift	0.150		2.554240			Reserved for	Gabor Lens r	nhysical leng	th
-	22	LEL	7.778	LHA LEL VAC DRI 09	drift	0.100					Academ ved 10	Cabor Letts p	ing sicar lengt	511
	23	LEL	7.928	LHA LEL VAC DRI 10	drift	0.150					Reserved fo	r Gabor Lens r	ohysical leng	th
-		A OF A BUILT	STAGE14POR		STACEDAROD	T. 0			CEOINIVIVO			Caper cella p	, sicurieng	

Updated Model Configurations

- Updated BDSIM model & schematic diagrams
- New model configurations:
 - V4.4: main baseline design
 - V5.4: alternative baseline design

Geometry Configuration Updates

Liser-hydrid Accelerator for Baddabiological Applications

- Stage 2 energy selection collimation added
 - 0.2m downstream of stage 1 collimator (GL3 focal length)
 - Settings to be optimised
- 1st Octupole removed:
 - No discernible impact on bunch uniformity
 - Phase space difference at the stage 1 end station (on off):

- Sampled beam generated from Smilei
- Non-parallel beam between GL2 & GL3
 - Requirement flexibility needed to accommodate RF, shielding wall, etc.

Capture Section Shielding

- Sampled beam generated from Smilei

Smaller beam sizes remain a challenge

- Requirement for stage 2 FFA injection line

WP3 & WP6 Meeting: Nov 2022

No space! Flange to flange.

- Potential requirement for additional space for vacuum pumps coupling for GL1
 - Additionally, if GL1 needs external filling from off-axis e- source.
- Increasing the distance between GL1 and GL2 decreases the performance
- With the most up to date distribution from the nozzle (from HT), we can add 15cm between the nozzle and the GL1
 - Not much more than that!
 - This is only possible if we trust the target simulation

- It was proposed to keep the baseline of the capture system (the first two GLs coupled to the target system) unchanged.
- The filling of both GL1 and GL2 is planned to be performed using the movable electron source on-axis, from the downstream direction from the drift between GL2 and GL3. It is hoped that the plasma will be stable for sufficiently long time so the electron source could be removed for the proton operations.
- The space for vacuum pumps coupling for GL1 on the side of the target vessel seems sufficient, but pumping can be also located downstream including the source chamber, so no changes proposed.
- Question over validity of the Smilei sampled beam
 - Extrapolation from 2D to 3D

- 71.8% of particles within the energy range (15MeV +/- 2%) survives the entrance nozzle cut (r=2mm)
- 35.6% of particles within the energy range (15MeV +/- 2%) survives the exit nozzle cut (r=2.87mm)
 - 40.1% of particles within the energy range (15MeV +/- 2%) survives the exit nozzle cut (r=2.87mm) if space charge is ignored

- Previous strategy: 5cm without space charge followed by 5cm with.
- Now have electron distribution data
 - Co-propagate with proton beam. <u>Non-trivial!</u>

	Smilei Sampled Beam	SCAPA Beam	Scapa Beam (No space charge	Pre-CDR Beam
Mean RMS emittance [m]	1.43x10 ⁻⁸	1.26x10 ⁻⁷	5.5x10 ⁻⁸	3.26x10 ⁻⁷
Mean beta [m]	141.34	12.82	28.8	4.89
Mean alpha	-1418.43	-129.79	-288.03	-50.22

- 77% of particles within the energy range (15MeV +/- 5%) survives the entrance nozzle cut (r=2.87mm)
- Assess energy collimator performance & optimise.

SCAPA Beam Phase Space

16

ROYAL HOLLOWAY

Beam Size & Plasma Radius

- Beam size at the nozzle exit (2.87mm) -2.26σ
- Beam size at the exit of the second GL with 2.26σ is
 28.4mm (77.8% of the cathode radius)
 - What is the max radius of the electron cloud we can use?
 - With the solenoid with an aperture of 36.5mm we could accept the beam up to 2.9σ?
- Maximum radius of the beam in the capture section defines if we need to modify the nozzle or not

- Beam diameter of
 3cm can be
 produced
- Issues with obtaining smaller final beam size
- Issues with matching to the Stage 2

- Solutions found for producing a parallel beam

- Smaller beam sizes remain challenging

LhARA: Stage 2

- Stage 2 no updates.
- Injection line to be updated pending beam update.
 - Necessity to accommodate shielding wall

7 Gabor Lens Configuration

- Investigation of 7 Gabor lens / solenoids configuration
- Single energy collimator
- Geometry modifications:
 - Extra 0.2m between GL4 & GL5
 - 2.5m long drift after GL5
 - GL6 & GL7 added in same configuration as GL4 & GL5

ROYAL HOLLOWAY

Space Charge Modelling

- Space charge impacting performance

- Same strength GL1 to GL3 for all solutions
- Solutions for GL4 to GL7 for larger beam sizes
- 1.4T solenoid limit

- Smaller beam sizes than 5 lens solution achievable
- Smaller still is an ongoing challenge
 - Minimal space charge impact

- Continue improving flexibility in stage 1 matching
- Continue incorporating space charge in matching
- Find the new injection line
- Work on the FFA update
- Aim: pass lattice to engineers by end of February.

- Investigation of initial distribution
 - Baseline flexibility issues
- Optimised solutions for delivering beams to the end station
- Smaller beam sizes remains a challenge
 - Injection line requirement
- Promising configuration
 - Optimisation efforts ongoing

