Progress Update

William Shields

(william.shields@rhul.ac.uk)

WP6 Meeting

28th February 2023

General Update

Laser-hybrid Accelerator for Badiolological Applications

- No progress on solenoid optimisation
 - Other commitments
- Solenoid focus discrepancy due to suspected user error apologies!
- Assembling & tabulating data for 6 month report
 - Beam parameters
 - Nozzle transmission
 - Lattice geometry changes
 - Solenoid strengths (nominal & optimised all configurations)
 - Gabor Lens strengths (nominal & optimised all configurations)
 - Collimator settings
 - ...
- Overleaf document ?

Nozzle Transmission

- Beam after 5cm (unsure which code used to simulate 0-5cm)
- Down-sample & apply energy cut (±2%, ±5%)
- 2mm radial cut nozzle entrance aperture
- Propagate in GPT for 5cm
- Apply 2.87mm radial cut nozzle exit aperture

Beam Energy (MeV)	Particle Numbers at nozzle entrance (with 2.00 mm cut)	Particle Numbers at nozzle exit (with 2.87 mm cut)	Transmission (%)
15 ± 2%	35574	27321	76.80
15 ± 5%	88610	68038	76.78

ROYAL HOLLOWAY

- Minimal impact on spectrum
 - Momentum cleaning collimator in vertical arc generates ± 2% target
- Further down-sample beams to 10k particles for computational efficiency

- Tabulating beam parameters for 6 month progress report:
 - RMS emittance

Beam Energy (MeV)	E _x (m rad)	E _y (m rad)	β_{x} (m)	$\beta_{y}(m)$	$lpha_{\scriptscriptstyle { m X}}$	$lpha_{ m y}$
15 ± 2%	1.25e-7	1.24e-7	12.71	13.13	-128.70	-132.84
15 ± 5%	2.43e-7	2.42e-7	6.61	6.70	-66.73	-67.58

 Nominal parameters from Jaroslaw (15 MeV ± 2%):

• RMS physical emittance 1.26*10^-7 m

ROYAL HOLLOWAY

- Beta 12.82 m
- Alpha -129.79
- Beam will be 15 MeV \pm ~5% at the start of the FFA injection line
 - Momentum cleaning required in FFA injection line or FFA acceptance OK at ± 5%?

Emittance Growth

- Emittance changes significantly within the first solenoid
 - 3 cm spot size configuration
 - Spike between GL1 & GL2 due to finite solenoid fields
- Two independent emittance calculations:
 - GPT analysis program (gdfa)
 - BDSIM analysis program (rebdsimOptics)

Emittance At Arc Entrance

Beam Energy (MeV)	Nominal E _x (m rad)	Nominal E _y (m rad)	Simulated E _x (m rad)	Simulated E _y (m rad)
15 ± 2%	1.25e-7	1.24e-7	3.64e-6	3.52e-6
15 ± 5%	2.43e-7	2.42e-7	7.72e-6	7.71e-6

- Horizontal beam size (1 sigma radius) for β = 50m:

Beam Energy (MeV)	Nominal E _x	Simulated E_x
15 ± 2%	2.5 mm	13.5 mm
15 ± 5%	3.5 mm	19.7 mm

- Impact on FFA & injection line?
 - Re-optimisation needed for parallel beam
- Provision of small spot sizes still important
 - Beam transport flexibility
- Revisit 5 Gabor Lens model
 - Suspect β = 50m is met/achievable. Flexibility remains an issue.

- Done:
 - Begun assembling & tabulating crucial data for 6 month report
- Ongoing:
 - Find solutions for smaller beam sizes
 - Update models of alternative baseline design (v5.5)
- Todo:
 - Find new solution for for β = 50m
 - Determine nominal octupole settings
 - Quads only model (v6.0)
 - Develop OPAL model of FFA need JP input.