Progress Update

William Shields

(william.shields@rhul.ac.uk)

WP6 Meeting

28 ${ }^{\text {th }}$ February 2023

General Update

- No progress on solenoid optimisation
- Other commitments
- Solenoid focus discrepancy due to suspected user error - apologies!
- Assembling \& tabulating data for 6 month report
- Beam parameters
- Nozzle transmission
- Lattice geometry changes
- Solenoid strengths (nominal \& optimised - all configurations)
- Gabor Lens strengths (nominal \& optimised - all configurations)
- Collimator settings
- ...
- Overleaf document?

Nozzle Transmission

ROYAL
HOLLOWAY HOLLOWAY UNIVERS

- Beam after 5 cm (unsure which code used to simulate $0-5 \mathrm{~cm}$)
- Down-sample \& apply energy cut ($\pm 2 \%, \pm 5 \%$)
- $2 m m$ radial cut - nozzle entrance aperture
- Propagate in GPT for 5 cm
- Apply 2.87mm radial cut - nozzle exit aperture

Beam Energy (MeV)	Particle Numbers at nozzle entrance (with 2.00 mm cut)	Particle Numbers at nozzle exit (with 2.87 mm cut)	Transmission (\%)
$15 \pm 2 \%$	35574	27321	76.80
$15 \pm 5 \%$	88610	68038	76.78

- Minimal impact on spectrum
- Momentum cleaning collimator in vertical arc generates $\pm 2 \%$ target
- Further down-sample beams to 10k particles for computational efficiency

Beam Parameters

- Tabulating beam parameters for 6 month progress report:
- RMS emittance

Beam Energy $(M e V)$	$E_{x}(m \mathrm{rad})$	$E_{y}(m \mathrm{rad})$	$\beta_{x}(m)$	$\beta_{y}(m)$	α_{x}	α_{y}
$15 \pm 2 \%$	$1.25 \mathrm{e}-7$	$1.24 \mathrm{e}-7$	12.71	13.13	-128.70	-132.84
$15 \pm 5 \%$	$2.43 \mathrm{e}-7$	$2.42 \mathrm{e}-7$	6.61	6.70	-66.73	-67.58

- Nominal parameters from Jaroslaw ($15 \mathrm{MeV} \pm 2 \%$):
- RMS physical emittance 1.26*10^-7 m
- Beta 12.82 m
- Alpha -129.79
- Beam will be $15 \mathrm{MeV} \pm \sim 5 \%$ at the start of the FFA injection line
- Momentum cleaning required in FFA injection line or FFA acceptance OK at $\pm 5 \%$?

Emittance Growth

- Emittance changes significantly within the first solenoid
- 3 cm spot size configuration
- Spike between GL1 \& GL2 due to finite solenoid fields
- Two independent emittance calculations:
- GPT analysis program (gdfa)
- BDSIM analysis program (rebdsimOptics)

Emittance At Arc Entrance

Beam Energy (MeV)	Nominal E_{x} $(\mathrm{m} \mathrm{rad})$	Nominal E_{y} $(\mathrm{m} \mathrm{rad})$	Simulated E_{x} $(\mathrm{~m} \mathrm{rad})$	Simulated E_{y} $(\mathrm{m} \mathrm{rad})$
$15 \pm 2 \%$	$1.25 \mathrm{e}-7$	$1.24 \mathrm{e}-7$	$3.64 \mathrm{e}-6$	$3.52 \mathrm{e}-6$
$15 \pm 5 \%$	$2.43 \mathrm{e}-7$	$2.42 \mathrm{e}-7$	$7.72 \mathrm{e}-6$	$7.71 \mathrm{e}-6$

- Horizontal beam size (1 sigma radius) for $\beta=50 \mathrm{~m}$:

Beam Energy (MeV)	Nominal E_{x}	Simulated E_{x}
$15 \pm 2 \%$	2.5 mm	13.5 mm
$15 \pm 5 \%$	3.5 mm	19.7 mm

- Impact on FFA \& injection line?
- Re-optimisation needed for parallel beam
- Provision of small spot sizes still important
- Beam transport flexibility
- Revisit 5 Gabor Lens model
- Suspect $\beta=50 \mathrm{~m}$ is met/achievable. Flexibility remains an issue.

Summary

- Done:
- Begun assembling \& tabulating crucial data for 6 month report
- Ongoing:
- Find solutions for smaller beam sizes
- Update models of alternative baseline design (v5.5)
- Todo:
- Find new solution for for $\beta=50 \mathrm{~m}$
- Determine nominal octupole settings
- Quads only model (v6.0)
- Develop OPAL model of FFA - need JP input.

