Progress Update

William Shields

(william.shields@rhul.ac.uk)

WP6 Meeting

 10^{th} March 2023

General Update

- No progress on optimisation
- Continued assembling & tabulating data for report
- Report write-up in progress
- Investigating emittance issue

Emittance Growth

- Observing emittance growth without space charge:

- Cause: GPT screens. No emittance growth observed when sampling in time.
 - Unknown reason why.
- Impact: minor
- Time snapshots will capture beams within magnetic fields
 - Accept that GPT won't be identical to BDSIM & MADX.

Emittance Growth: Beam Size

- Minimal impact on tracking
 - Beam size & momentum match well
- Conclusion: Don't use screens!

Beam / Nozzle Workflow

- Beam from laser-target simulation output tracked again (no screens)
- Initially down-sampled to 100k
- Second down-sampling after nozzle exit to 10k
 - Computational efficiency
- Regenerate some stage 1 tracking data -> weekend.

Particle Distributions: Nozzle Exit

Laser-tybrid Accelerator for Eadebiological Applications

- Only time distribution showing notable differences
- 15 MeV ± 5% (similar agreement for 15 MeV ± 2%)

Stage 1 Optics

- Good optics agreement without space charge

- 3cm beam configuration settings (2 sigma diameter)

- Beam parameters at exit of target housing:

Beam Energy (MeV)	E _x (m rad)	E _y (m rad)	β_{x} (m)	β_{y} (m)	$lpha_{\scriptscriptstyle { m X}}$	$lpha_{ m y}$
15 ± 2%	8.13e-8	7.82e-8	19.84	20.59	-201.03	-208.70
15 ± 5%	6.87e-8	6.72e-7	23.40	24.10	-236.43	-243.58

- Comparison to other beams :
 - Factor ~ 1.75 difference between SCAPA screen & tout beams

	Smilei Sampled Beam	SCAPA Beam (Screen)	Scapa Beam (Tout)	Pre-CDR Beam
Mean RMS emittance [m]	1.43x10 ⁻⁸	1.26x10 ⁻⁷	7.98x10 ⁻⁸	3.26x10 ⁻⁷
Mean beta [m]	141.34	12.82	21.62	4.89
Mean alpha	-1418.43	-129.79	-222.23	-50.22

- Comparable nozzle transmission:

Beam Energy (MeV)	Initial Proton Distribution	Protons at nozzle entrance (with 2.00 mm cut)	Protons at nozzle exit (with 2.87mm cut)	Nozzle Transmission (%)	Nozzle Transmissio n – Screen Data (%)
15 ± 2%	100000	88709	68044	76.70	76.80
15 ± 5%	100000	88704	69162	77.97	76.78

Report

- Baseline update recommendations
 - Collimator for stage 2 operation, removal of 1st octupole
- Beam discussion
 - Motivation for pursuing performance with SCAPA beam
- Baseline design performance with SCAPA beam
 - Highlight doubts over flexibility to deliver different spot sizes
 - Low beta requirement for FFA injection line
- 7 Gabor lens configuration
 - Nominal performance
 - Space charge impact
 - Optimisation

- Done (locally)
- Ongoing
- Todo

- Done:
 - Identified cause of observed emittance growth issue peculiar GPT behaviour
 - Re-simulated beam transport in the target housing
- Ongoing:
 - Write-up for 6 month report
 - Re-running of stage 1 beam transport simulations
 - Re-run optimisation routines with updated beam
 - Update models of alternative baseline design (v5.5)
- Todo:
 - Re-run collimation settings study
 - Determine nominal octupole settings
 - Quads only model (v6.0)
 - Develop OPAL model of FFA need JP input.