LhARA: The Laser-hybrid Accelerator for Radiobiological Applications

William Shields

On behalf of the LhARA Collaboration

william.shields@rhul.ac.uk

IOP Particle Accelerators and Beams Conference

29th June 2023

The Case for LhARA

- Growing global requirement for radiotherapy
 - Improve availability & accessibility
 - Develop new & cost-effective technologies
- Systematic study of the radiobiology of ion beams
 - Treatment planning is RBE dependant
 - Uncertainties due to:
 - Energy, ion species, dose, spatial distribution, dose rate, tissue type, biological endpoint
 - Proton RBE variation

W. Shields

- All p-treatment planning uses RBE = 1.1

2

- Novel treatment modalities
 - Ultra-high dose rates: FLASH
 - Spatially fractionated mini-beams
- Further research is required, both in-vitro and in-vivo

The LhARA Collaboration

- Deliver a systematic and definitive radiobiology programme
- Prove the feasibility of the laser-driven hybrid-accelerator approach
- Lay the technological foundations for the transformation of PBT

LhARA & ITRF

- £2M UKRI Infrastructure Fund grant
 establishment of Ion Therapy
 Research Facility (ITRF)
 - Compact, single-site national research facility
 - 2 year "Preliminary Activity"
 - 3 year pre-construction phase
 - Facility CDR by October 2024

- · LhARA work package structure:
 - WP1.1: Project management
 - WP1.2: Laser-driven source
 - WP1.3: Beam capture
 - WP1.4: Ion acoustic diagnostics
 - WP1.5: Novel end station
 - WP1.6: Design & integration

- LhARA to serve ITRF
 - Conventional technology study (NIMMS)
 - Synchrotron & injector from established ion sources & acceleration methods

- Outreach & engagement
 - Users, Patient and Public Involvement
 - Website
 - Peer group consultation meetings, Dec 2022, June 2023.

ITRF timeline submitted to IAC, 15Jun21																																
	202	2		202	23		20	24		20	025		20	26		2022	7		200	28		202	1 9		200	980		200	251		2027	2028
	Q2 (Q3 C	Q4 Q1	Q2	Q3 (Q4 Q1	Q2	Q3	Q4 Q1	Q2	2 Q3	Q4 Q1	Q2	Q3	Q4 Q1	Q2	Q3 (Q4 Q1	Q2	Q3 C	4 Q1	Q2	Q3 (Q4 Q1	L Q2	Q3	Q4 Q:	1 Q2	Q3	Q4 Q1		
Preliminary Activity (PA)]
Preconstruction programme				1									T								1		i						1			
Facility construction				1						T					Stage	1							Stag	ge 2								
Facility exploitation													<u> </u>																			

milestones LhARA Preliminary Activity and Pre-construction Phase; principal milestones

The LhARA Accelerator

Liser-hybrid Accelerator for Radiological Applications

Pre-conceptual design report (pre-CDR) publication: Aymar, G. et al, Frontiers in Physics, (8), September 2020, 567738 LhARA baseline design technical note: <u>https://ccap.hep.ph.ic.ac.uk/trac/raw-</u> <u>attachment/wiki/Communication/Notes/CCAP-TN-11-LhARA-Design-</u> <u>Baseline.pdf</u>

LhARA performance summary														
	12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon										
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy										
Instantaneous dose rate	$1.0 imes 10^9$ Gy/s	$1.8 imes10^9{ m Gy/s}$	$3.8 imes10^8{ m Gy/s}$	$9.7 imes10^8{ m Gy/s}$										
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s										

Laser-driven Proton & Ion Source

- High intensity laser driven ion sources:
 - High instantaneous dose rate 10-40 ns bunches
 - Triggerable; arbitrary pulse structure
 - High energy from source (up to ~100 MeV)
- Proton & ion source prediction
 - 3D TNSA simulations
 - SCAPA facility & experimental beam time

- Identify LhARA facility laser requirements

- Generation of proton (15 MeV) and carbon (4 MeV/u) beams using existing "tape" targets
- 10 Hz operation
- Understanding of debris & stabilisation schemes

Proton & Ion Capture

Liser-hybrid Accelerator for Baddobiological Applications

- Novel Gabor electron-plasma-lens
 - Capture & focusing
 - Solenoid-like strong focusing without high power, high-field magnet
 - Radial focussing in both planes simultaneously
 - Energy-dependent focusing strength
- Develop a detailed design of the next generation Gabor-lens prototype
- Experimental setup at Swansea University
 - Electron-plasma dynamics measurements
 - Bench-mark simulations
 - VSim & WarpX

Ion-Acoustic Dose Mapping

- On-the-fly, non-invasive, range verification system
 - Real-time dose deposition profile
 - Bragg peak localization
- Beam induced thermoelastic expansion
 - Increase in pressure acoustic wave (thermoacoustic effect)
 - Ultrasound detector
 - Image reconstruction
- Design proof of principle experiment
 - Geant4 MC simulation
 - K-wave acoustic model
- LION beamline at CALA (LMU Munich)
 - BDSIM modelling of experimental setup

LhARA Facility Infrastructure

- Engineering design underway
 - Iterate as systems develop

Magnets, RF, Diagnostics, End stations, Shielding, Electrical power, Cooling, Vacuum, Controls, ...

LhARA Facility

- Engineering design underway
 - Iterate as systems develop
- CAD modelling
 - Survey generation from BDSIM

W. Shields

LhARA Stage 1

Alternative Configuration

29th June 2023

LhARA Stage 2

- Injection line, FFA ring, extraction line, 2 end stations
- FixField FFA tracking -
 - Space charge considerations needed
- Injection line redesign to accommodate facility shielding
- FFA tunability

- LhARA will serve the radiobiology community using a laserhybrid approach
 - Overcome dose-rate limitations of current and proton & ion therapy sources.
 - Offer unparalleled flexibility by deliver a range of ion species, energies, dose, dose-rate and time and spatial distributions.
- The LhARA and ITRF "Preliminary Activity " programme is underway!
 - Prove technical feasibility of novel accelerator technologies.
 - Develop & deliver a broad radiation biology programme.
 - Create the capability to transform proton and ion therapy.

