Simulation Update

William Shields

(william.shields@rhul.ac.uk)

WP6 Meeting

04th July 2023

End Station Dose

- BDSIM end station model matches pre-CDR description:

!+++++ End Station +++++

ES_o1: drift, l=0.01*m, beampipeRadius = 0.05*m; vacuumWindow: rcol, l=75e-6*m, material = "G4_MYLAR", outerDiameter = 0.1; scintFibre: rcol, l=250e-6*m, material = "G4_POLYSTYRENE", outerDiameter = 0.1; gap1: gap, l=5.0e-3*m, material = "air"; ! Tried as air or water container: rcol, l=1.15*mm, material = "G4_POLYSTYRENE", outerDiameter = 0.1; cells: rcol, l=30e-6*m, material="G4_WATER", outerDiameter = 0.1; ! water will need to be u skincells: rcol, l=30e-6*m, material="G4_SKIN_ICRP", outerDiameter = 0.1; water: rcol, l=0.024*m, material="G4_WATER", outerDiameter = 0.1;

endStationSkin: line=(ES_o1, vacuumWindow, scintFibre, gap1, container, skincells, water);

- Modelled idealised beam to match pre-CDR
- Unsure if HT dose calculations are start-to-end simulations?
- Nparticles entering cell layer disagrees
 - Will: 10000
 - HT: 7247
 - <u>Approximate stage 1 transmission tbc</u>
- BDSIM scoring mesh added (unavailable at time of preCDR studies
 - Dose in GeV & dose in Gy.
- NOT Markus ion chamber simulations

Bragg Peak Depth

- Good agreement between pre-CDR
 & recent simulations on BP depth
 - 10, 12, 15 MeV proton beams
 - Validated BDSIM model.
- Model differences:
 - ± 2% energy spread in BDSIM broader peak
 - Water volume thickness

Cell Layer Spectra

Energy of Particles Entering/Exiting Cell Layer (15 MeV Ideal Beam)

- Differences in spectrum pre & post cell layer.

ROYAL HOLLOWAY

- Mean KE (HT):
 - Entrance : 7.92 MeV
 - Exit: 7.73 MeV (calculated)
- Mean KE (Will):
 - Entrance: 8.758 +/- 0.488 MeV
 - Exit: 8.590 +/- 0.496 MeV
- Possible source of differences:
 - Geant4 version
 - Model materials
 - Cell Layer
 - Model element lengths
 - Sample container

Dose Comparison (15 MeV)

- Energy deposited:
 - HT: 1.32 GeV 7247 particles
 - Will: 1.68 GeV 10000 particles
 - Scaling: 1.22 GeV 7247 particles
- Unknown how HT calculated dose in Gy
 - Energy deposited & volume known, cell layer density to be looked up
- Scaled dose per pulse (HT conversion ratio GeV -> Gy):
 - HT: 1.33 Gy
 - Will: 1.1639 Gy (KE method)
 - Will: 1.1644 Gy (Scoring method)
- BDSIM scoring Gy:
 - Will: 0.2318 Gy

Dose: Summary & Next Steps

- Repeated some of HTs procedures disagreement
 - Dose calculation in Gy unknown
 - Agreement between BDSIM calculation methodologies in GeV
 - BDSIM scoring in Gy factor ~5 off.
- Next steps (Lilli & myself):
 - Cross-check dose calculations
 - Markus Ion chamber volume at Bragg peak
 - 2.65mm radius, 2mm depth
 - Minimum specified beam diameter of 10mm.
 - Model changes (preCDR pg 31):
 - was simulated into the chamber. The thickness of the sample container was reduced so the Bragg peak could be positioned within the chamber volume leading to a total energy deposited of 3.1×10^{-4} J, corresponding
 - Thickness change NOT specified
 - Investigate possible discrepancy sources (slide 4)
 - Standardised set of doses at various energies:
 - Scale to transmission.

Spot Size Optimisation

- Status:
 - 1) 3.0 & 2.5 cm achieved, smaller beams needing large fitting tolerances
 - 2) GL 4 & 5 optimised for all spot sizes, GL 6 & 7 achieved, tolerance issues for smaller.

Spot Size Optimisation

- Typically seeing beam waist after the final Gabor lens
 - All beam sizes
- Attempting madx optimisation with updated beam after GL3.
 - Possibly vary drift length between GL5 & GL6.

- At CERN for multiple meetings/discussions including Andrea Latina (RF-track)
- Topics of discussion:
 - RF-track access
 - Validating GPT LhARA simulations
 - Co-propagating beams & validation of
 - Interfacing potential (BDSIM / xsuite)
 - Electrostatic focusing (Gabor lens approximation)
 - FFA modelling feasibility

Any other suggestions ???

Summary

- Done:

- IOP PAB Talk
- Start dose comparison study
- Ongoing:
 - Re-run optimisation routines
- Todo:
 - <u>Comparison to baseline design</u>
 - Test IMPACT-T & model LhARA beam.
 - Update models of alternative baseline design (v5.5)
 - Develop OPAL model of FFA need JP input.