Simulation Updates

William Shields

(william.shields@rhul.ac.uk)

WP6 Meeting

25th July 2023

Beam Data Sets

- Have beam data set at nozzle exit:
 - 15 MeV ± 2% 10000 protons
 - 15 MeV **±** 2% 68044 protons
 - 15 MeV **±** 5% 10000 protons
 - 15 MeV **±** 5% 68162 protons
- Nozzle transmission: 68%
 - Comparable beam profiles
 - Little impact on transmitted spectrum
- Step-by-step guide on getting beam at nozzle exit:
 - Guide: ccap-sim/beam
 - Data: /home/hep/wshields/ccap/ccap-sim-data/beam/
- 3 data sets:
 - Partial:
 - Initial simulations (03/23)
 - Re-check (06/23)
 - Full:
 - Second re-check (07/23)

ROYAL HOLLOWAY

- Full stage 1 beam line, 68044 protons, space charge, 15 MeV ± 2%
 - 100k target exit -> 68% nozzle transmission

3.0cm Spot Size End Station Beam Profile

Coordinates at Position =22.561 m

Coordinates at Position =22.561 m

- Bunch length (T): <u>2.77 ns (1 sigma (z) * velocity)</u>

Sigma Z (m): 0.14678

- MADX optimisation beam at CAV02 mid-point (GL1, 2, & 3 optimised)
 - Similar optics behaviour to GPT optimisation (pre-arc parallel beam)
- MADX optimised solutions for 3.0, 2.5, 2.0, and 1.5cm spot sizes

Spot Size Optimisation

- 1cm (2 sigma diameter) spot size "optimised", machine length unchanged.
 - End station: σ_x : 1.151cm, σ_y : 1.261cm (β_x : 5.796m, α_x : -0.365, β_y : 6.869m, α_y : -0.607)
 - + beam constraints in end station drifts
- Acceptable?
 - Space charge simulations to be run
 - Asymmetry from beam production.
 - Dose profile sensitive to end station position

- Arc crucial to small spot size beam transport
 - Equivalent drift length model divergent beam
- Optimising the full stage 1 model in GPT with space charge is impractical:
 - Simple optics (no optimisation) without arc: ~ 10 minutes (10k protons)
 - Simple optics (no optimisation) simulation with arc : ~ **4 hrs** (10k protons)

Further Optimisation

- Mini-beam-like optimisation for smaller spot sizes?

ROYAL HOLLOWAY

- Vary arc quads +...?
- Modifiable element lengths:
 - 0.3m between Gabor lens pairs
 - 2.5m drift between GL5 & GL6
 - 0.5m RF cavity drift length (after energy collimator) ???
 - Location sensitive?
 - Started investigating no success yet
- Alternative code
 - RF-track, IMPACT-T, ...

FFA Injection Conditions

- Reminder known emittance growth from solenoids
- Most recent emittance at switching magnet (3cm spot size configuration):
 - 3.757e-06

- GL5 & GL6 off
- Large 1σ beam radius
- Asymmetry mitigated by optimised injection line
 - <u>Understanding of</u> <u>TNSA origin desired</u> <u>first</u>

Npart 10000.00 Emitt X 2.91e-06 Emitt Y 2.81e-06 Beta X 50.24 (m): Beta Y (m): 52.86 Alpha X -0.07Alpha Y : -0.07 Sigma X (m): 0.01200 Sigma Y (m): 0.01210 Sigma Z (m): 0.11050

- Outstanding questions:

- Do we need the focus after GL5?
- Is this acceptable by the FFA?
 - If not, how do we mitigate this?

End Station Dose Calculations

- Lilli & myself cross-checked dose calculations
 - <u>Cannot obtain pre-CDR dose values</u>
- Pre-cdr dose calculations <u>independent</u> of LhARA beam transport performance
 - Exception: bunch length for instantaneous dose calculation
- Likely found HT's dose simulation files (BDSIM)
 - Model stored in the output investigating
 - Copied on LX & to local machine
- Shelve end-station simulations focus on Markus ion chamber modelling
 - Pre-CDR comparison / re-run
- Standardised set of doses at various energies & beam sizes

- Write up as technical note

- Scale dose as appropriate.

LhARA / CERN ABP Discussions

- Meeting 28/04/23:
- <u>https://lhara-abp.notion.site/lhara-abp/1a32dbfe63cf4ffcba567f079b31d206?v=8fc266b2cc6c4d9aac52ebc7707ce700</u>

Space charge/collective effects: • Code-to-code validation • Code-to-data validation • Conceivable to develop collaborative code development.	Beam dynamics and simulation: • Electrostatic focusing/Stage I • FFA • Inclusion of space charge in linac and ring	 Plasma lenses, source and capture: Consideration of discharge lens alongside electron plasma lens Understanding source and capture 	<u>Conventional source:</u> • Performance of conventional source • Protons and ion
 Code-code validation – yes (LhARA) Code-data validation useful - yes (both) Collab. development sought (both + BDSIM) 	 ES focusing - definitely possible FFA - to be investigated Space charge modelling in linac - yes Ring - to be investigated Personal note - in contact with Chris Rogers - pyopal offers potential interface to FFA + SC modelling 	 Discharge lens – not discussed Source & capture understanding - yes 	- Not discussed

RF-Track Discussions

- Constructive discussions with Andrea Latina on RF-Track:
 - Composite (co-propagating) beams can be modelled
 - Only mono-species beam validated
 - Code obtained & working (mac)
 - Also to be installed on RHUL multi-core PC
 - Basic collimation (aperture cut-off)
 - Limited physics
- Plan:
 - Recreate first 10cm after nozzle with current methodology
 - SC validation
 - Input/output conversion tools
 - Set-up for co-propagating beams
 - <u>Need electron phase space & spectrum data</u>
 - Explore possible modelling of Gabor lens e- cloud & proton/ion beam
 - Effect on beam dynamics, transmission

RF-Track Discussions

- RF-Track & Xsuite interface in development
 - Xsuite: new multiparticle tracking code suite
 - Aim to eventually replace existing multiparticle tracking codes (MAD-X track, sixtrack, etc)
 - Interface with said codes provided
 - More <u>here</u>.
- Aim: Interface BDSIM with Xsuite (and RF-Track by extension)
 - Develop BDSIM interface
 - Pybind11 ongoing
 - Reconvene in ~2 months.

Summary

- Done:
 - Installed & tested RF-track
 - Regenerated beam data set at nozzle exit (± 2% & ± 5%)
 - Sent updated survey of 7 Gabor lens model
 - Matched beam conditions for FFA injection*
 - Optics settings validated for 3.0cm beam
- Ongoing:
 - Optimisation routines for smaller spot sizes
 - Optimisation validation for smaller spot sizes
 - Reconstructing HTs end station simulations
 - Comparison to baseline design
- Todo:
 - Performance evaluation of ± 5% beams
 - No optimisation. Transport & transmission assessment.
 - Alternative space charge codes & model validation.
 - RF-track, OPAL, IMPACT-T, ...?
 - Update models of alternative baseline design (v5.5)
 - Develop OPAL model of FFA