WP6 Meeting, 01/08/2023

J.Pasternak, IC/JAI/RAL-STFC

New LhARA lattice with doublet focusing Ff, field on median plane (3D)

New LhARA lattice with doublet focusing Ff, scaling

New LhARA lattice with doublet focusing Ff, Twiss functions

New LhARA lattice with doublet focusing Ff, DAs

New LhARA lattice with doublet focusing Ff, parameters

•	Ν	10
•	k	5.37
•	Spiral angle	50.76°
•	R _{max}	~4.25 m
•	R _{min}	~3.68 m
•	(Qx, Qy)	(2.83, 1.22
•	B _{max}	1.5 T
•	P _f	0.386
•	Max Proton injection energy	15 MeV
•	Max Proton extraction energy	127.4 MeV
•	h	1

- RF frequency
- for proton acceleration (15-127.4MeV) ~2.29 ~5.32 MHz
- Bunch intensity few×10⁸ protons
- Range of other extraction energies possible
- Other ions also possible

New LhARA lattice with doublet focusing Ff, flexibility at constant k

(q_h, q_v)=(0.278, 0.054)

 $(q_h, q_v)=(0.283, 0.122)$ nominal working point

 $(q_h, q_v) = (0.292, 0.206)$

Summary

- Lattice is very flexible, perhaps too much
 - We could reduce flexibility and get more compact lattice with lower spiral angle