LhARA Model Validations

Stage 1 Optics and Beam Uniformity

Optics Validation

3.0 cm Beam - Sigma X

Optics Validation

3.0cm Beam - Sigma Y

GPT Dipole Peaks

Differences around dipoles are due to GPT time snapshots where only half the particles are in the dipole

MAD-X Energy Spread

A SigmaE value of 0.006 was required for the SigmaY optics to match (BDSIM SigmaE = 0.000196).

Likely caused by the way MAD-X handles energy spread but hard to confirm due to a lack of documentation

Beam Uniformity

3.0 cm beam - 41,000 particles - Data taken before Stage 1 end station (Drift 30)

 1.5° x / cm **Octupole On** $k3 = 6000 \text{ m}^-4$

Further Work

Optics Validation

Investigate the origin of the required SigmaE value of 0.006

Beam Uniformity

- Investigating the use of higher order magnets or introducing higher order components (combined function Octupole-Dodecapole)
- Octuples are most effective where the beam is larger in one transverse dimension
 - No space for an octupole within the arc quadrupoles
 - Potential of introducing the octupole to the quadrupole scheme being designed by Rehanah for mini-beam focusing after the arc.