
LhARA Beamline-01 Draft 0 October 23, 2024

LhARA-TN-2024-07

LhARA linear optics documentation
N. Dover1, K.R. Long1,2, J. McGarrigle1,3, M. Maxouti1,2, R. Razak1

1 John Adams Institute, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
2 STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
3 Institut Curie-Orsay Research Center, Bat a Campus d’Orsay, 91400 Orsay, France

Contents

1 Introduction 1

2 Coordinate systems 1
2.1 Laboratory coordinate system . 1
2.2 Reference particle local coordinate system . 1
2.3 Transforming to and from reference particle local coordinates to laboratory coordinates 2

3 Phase space, trace space, beam parameters 3
3.1 Phase space . 4
3.2 Trace space . 4
3.3 Beam parameters . 4

4 Transfer matrices 5
4.1 Drift . 6
4.2 Quadrupole . 6
4.3 Solenoid . 7
4.4 Non-neutral (electron) plasma (Gabor) lens . 7
4.5 Dipole . 8
4.6 Cylindrical cavity . 9

5 Source 11
5.1 Energy distribution . 11
5.2 Angular Distribution . 13
5.3 Spatial distribution . 13
5.4 Simulated distributions . 13

6 Beam-line specification and scripts 16
6.1 Beam-line specification . 16
6.2 Scripts . 17

Acknowledgements 18

References 19

A Class and data structures 20
A.1 BeamLine . 21
A.2 Particle and ReferenceParticle . 26
A.3 Beam and extrapolateBeam . 33
A.4 BeamLineElement . 39
A.5 UserFramework . 59
A.6 visualise . 61
A.7 BeamIO . 65
A.8 Simulation . 66
A.9 Physical constants . 68
A.10 Report . 71
A.11 LaTeX . 72

B Set-up and run 74
B.1 Introduction . 74
B.2 Getting the code . 74
B.3 Dependencies and required packages . 74
B.4 Unpacking the code, directories, and running the tests . 74
B.5 Running the code . 75
B.6 User framework . 75

3

1 Introduction

The LhARA [1, 2] linear optics package was written to allow rapid calculations to initiate more detailed studies
of the LhARA beam lines and for use as a tool to check issues as they arise. The package has been written in
Python so that it is accessible and can readily be updated, modified and maintained. At present the code treats
proton beams only.

This document presents the approximations and notation used and summarises the module, class and data
structures that have been adopted.

2 Coordinate systems

2.1 Laboratory coordinate system

The origin of the LhARA coordinate system, the “laboratory coordinate system” or “laboratory reference
frame”, is at the position of the laser focus at the laser-target interaction point [3]. The z axis is horizontal
and parallel to the nominal capture axis, pointing in the downstream direction. The y axis points vertically
upwards and the x axis completes a right-handed orthogonal coordinate system.

Unit vectors along the x, y and z axes are i, j and k respectively. The position of the reference particle as
well as its momentum and energy are described as functions of the distance it has travelled from the origin of
coordinates. The distance the reference particle has travelled is s, making the position, r0, momentum, p0, and
energy, E0, of the reference particle functions of s:

r0 = r0(s) ;

p0 = p0(s) ; and (1)

E0 = E0(s) .

The magnitude of the reference particle velocity is v0 and the relativistic parameters that determine the reference
particle energy and momentum are:

β0 =
v0
c
; and

γ0 =
1√

1− β2
0

;

where c is the speed of light. The time, t, at which the reference particle is at s is also a function of s:

t = t(s) =
s

v0
=

s

c

E0

cp0
; (2)

where p0 = |p0|.

2.2 Reference particle local coordinate system

A coordinate system defined relative to the position of the reference particle, the “reference particle local
coordinate” (RPLC) system, may be defined using the direction in which the particle is travelling. The position
of the particle defines the origin of the RPLC system, see figure 1. The tangent to the reference particle
trajectory at s defines the zr axis with unit vector kr. In the laboratory frame, the presence of local electric or
magnetic fields may cause the reference particle’s trajectory to change. In the neighbourhood of the particle,
the curved trajectory may be described in terms of an arc of a circle. The xr axis (with unit vector ir) is then
taken to be in the direction pointing away from the centre of the circle. The third coordinate axis, yr, is defined

1

s

jr

ir
kr

Figure 1: Reference particle local coordinate system. The trajectory of the reference particle is shown as the red
line. The distance the reference particle has travelled, measured from the origin of coordinates in the laboratory
frame, is labelled s. The origin of the “reference paricle local coordiante (RPLC) system is coincident with the
position of the reference particle. The directions of unit vectors along each of three righthanded, orthogonal
coordinate axes are shown as black arrows labelled ir, jr, and jr.

to complete the right-handed orthogonal coordinate system; the unit vector along the yr axis being given by
jr = kr × ir.

The trajectory of the reference particle is a straight line as it traverses a drift space and a variety of beam-line
elements. Examples of such beam-line elements include solenoids and quadrupoles. The reference trajectory
is also undeviated by passage through an accelerating cavity placed such that the accelerating field is parallel
to the reference-particle trajectory.

The RPLC coordinate system at s = 0 is taken to coincide with the laboratory coordinate system. Beam-
line elements are placed sequentially along the trajectory of the reference particle. If necessary a coordinate
transformation is performed to ensure that the RPLC system at the entrance to a particular beam-line element
is consistent with the definition given above.

2.3 Transforming to and from reference particle local coordinates to laboratory co-
ordinates

In the RPLC system, the trajectory of the reference particle, R0, is:

R0(s) = 0 . (3)

The position of a test particle in the RPLC frame, R, is described with reference to the position of the reference
particle. In the laboratory frame, the position of the test particle is:

r(s) = r0(s) + δr(s) ; (4)

where:
δr(s) = R(s)R(s) ; and (5)

2

R(s) is a rotation matrix that takes the RPLCs at s to the laboratory frame coordinates.

In the laboratory frame, the unit vectors ir, jr and kr are given by:

ir =

irx
iry
irz

 ;

jr =

jrx
jry
jrz

 ; and (6)

kr =

krx
kry
krz

 .

The rotation matrix, R, may now be written:

R(s) =

irx jrx krx
iry jry kry
irz jrz krz

 . (7)

3 Phase space, trace space, beam parameters

The motion of particles passing through an accelerator is most often described using classical Hamiltonian me-
chanics; quantum mechanics being required only in particular cases such as the description of spin polarisation
in a storage ring. In classical Hamiltonian mechanics the equations of motion are solved to give the evolu-
tion of the position, momentum, and energy as functions of a single independent parameter. The independent
parameter is often taken to be time.

Relativistic mechanics exploits four-vector position, R = (r, ct), and four-vector momentum, P = (cp, E).
In the Hamiltonian description of particle dynamics, these four vectors become functions of the independent
variable, i.e. R = R(t) and P = P(t). In the laboratory system, the position of the reference particle along its
trajectory is directly related to the time coordinate by t = cβ0s. This allows s to be taken as the independent
variable and for the motion of particles in the beam to be derived as functions of s.

The 6D phase-space coordinates of a particle as a function of s are given by the position and momentum
three vectors. The particle energy may be determined from the invariant mass and the time coordinate from the
invariant interval between the origin and the position represented by s.

The “trace-space” coordinates of a particle are defined relative to the reference particle. Usually, a beam
is understood to contain particles which follow trajectories that differ rather little from that of the reference
particle. Trace space is defined such that the position, “momentum”, and “energy” coordinates are small for
particles which follow trajectories close to that of the reference particle. The utility of this approach is that
trace-space coordinates may be used to perform Taylor expansions of the Hamiltonian which may readily be
solved to yield a description of particle transport using functions that are linear in the trace-space coordinates.

The notation used for the 6D phase and trace spaces are defined in this section.

3

3.1 Phase space

The 6D phase-space vector is defined in terms of the three-vector position and three vector momentum as:

[
r

p

]
=

x

y

z

px
py
pz

(8)

The trajectory of the particle may be evaluated as a function of time or s.

3.2 Trace space

Trace space is defined to simplify the calculation of the trajectory of particles through the accelerator lattice
and is derived from the phase space expressed in the RPLC frame. Consider a particle with position rRPLC =

(xRPLC, yRPLC, zRPLC) and momentum pRPLC = (pxRPLC, pyRPLC, pzRPLC). Taking the magnitude of the
momentum of the reference particle in the laboratory frame to be p0, the trace-space coordinates are given by:

ϕ =

xRPLC

x′RPLC

yRPLC

y′RPLC

zRPLC

δRPLC

; (9)

where:

x′RPLC =
∂x

∂s
=

cpx RPLC

cp0
; (10)

y′RPLC =
∂y

∂s
=

cpy RPLC

cp0
; (11)

zRPLC =
s

β0
− ct =

∆s

β0
; and (12)

δRPLC =
E

cp0
− 1

β0
=

∆E

cp0
. (13)

Here ∆s = s − s0 and ∆E = E − E0, where s0 and E0 are the reference particle position and energy
respectively; E and s are the energy and position of a particular particle in the beam.

3.3 Beam parameters

The trace space vector, ϕ
i
, of the ith particle at a position along the beam line contains the variance of the

particle coordinates with respect to those of the reference particle. For a sample containing N particles, the
covariance matrix, C

6
, may therefore be obtained by evaluating:

C
6
=

1

N

N∑
i

ϕ
i
ϕT
i
=
〈
ϕ ϕT

〉
; (14)

where the notation ⟨⟩ is used to denote evaluating the expectation value. The RMS emittance of the beam in all
6 trace-space dimensions is then given by:

ε6 =
6

√∣∣∣C
6

∣∣∣ . (15)

4

In an analagous notation, the four-dimensional transverse trace space (x, x′, y, y′) may be used to define the
four-dimensional covariance matrix C

4
, which, in turn, can be used to evaluate the four-dimensional transverse

emittance:

ε4 =
4

√∣∣∣C
4

∣∣∣ . (16)

The size of the beam in the two “transverse planes” (x, x′) and (y, y′) is contained in two, 2 × 2, submatrices
of C

6
, C

x
and C

y
. If the x and y coordinates are to be taken as uncoupled, then the emittance of the (x, x′)

and (y, y′) trace space my be obtained using:

εx =

√∣∣∣C
x

∣∣∣ and (17)

εy =

√∣∣∣C
y

∣∣∣ . (18)

With u = x or y, the area of the trace space ellipse is given by πεu and the Twiss parameters, αu, βu, and γu
are given by:

σ2
u =

〈
u2
〉

= βuεu ; (19)〈
u′2
〉

= γuεu : and (20)〈
uu′
〉

= −αuεu ; (21)

where:

βuγu − α2
u = 1 . (22)

4 Transfer matrices

A beam line may be described as a series of beam-line elements arranged one after the other. A particle may then
be transported through the beam line by transporting it through each element in turn. Taking advantage of the
trace-space defined above, the transport of a particle across a particular beam-line element may be performed
using a linear transformation:

ϕ
end

= T ϕ
start

; (23)

where ϕ
start

is the trace-space vector at the start of the beam-line element and ϕ
end

is the transformed trace-
space vector at the end. The step across the beam-line element implies an increment, δs, to the s-coordinate
given by:

send = sstart + δs ; (24)

where sstart and send are the coordinate along the reference particle trajectory at the start and end of the beam-
line element respectively. Equation 14 implies that the covariance matrix may be transported across a beam-line
element using the expression:

C
6 end

= T C
6 start

T T . (25)

There are many excellent descriptions of the derivation of the transfer matrices, T , so only the results are
quoted here. The notation used below is developed from that used in [4].

5

4.1 Drift

A “drift” space refers to a region in which the beam propagates in the absence of any electromagnetic fields. In
a drift, particles propagate in straight lines, therefore:

T
drift

=

1 l 0 0 0 0

0 1 0 0 0 0

0 0 1 l 0 0

0 0 0 1 0 0

0 0 0 0 1 l
β2
0γ

2
0

0 0 0 0 0 1

; (26)

where l is the length of the drift. The increment in the reference particle position is:

δs = l . (27)

4.2 Quadrupole

The passage of a beam particle through a quadrupole magnet may be described by specifying the field gradient,
g, within the magnet and the length, lq, of the quadrupole measured along its axis. The impact of a quadrupole
on the trajectory of a particle in the xy plane is independent of the impact of the magnet on the particle’s
trajectory in the yz plane. In this sense quadrupole focusing in the xz and yz planes is said to be “uncoupled”.

If the field gradient along the x and y axes is identical, then:

gx =
∂Bqx

∂x
= gy =

∂Bqy

∂y
= g ; (28)

where the field in the quadrupole, Bq, has components (Bqx, Bqy, 0).
In the “hard-edge” approximation, where the field falls to zero at the start and end of the quadrupole, the

transfer matrix for a quadrupole focusing in the xz plane (a “focusing quadrupole”) may be written:

T
Fquad

=

cos(
√
kqlq)

sin(
√

kqlq)√
kq

0 0 0 0

−
√
kq sin(

√
kqlq) cos(

√
kqlq) 0 0 0 0

0 0 cosh(
√

kqlq)
sinh(

√
kqlq)√

kq
0 0

0 0
√
kq sinh(

√
kqlq) cosh(

√
kqlq) 0 0

0 0 0 0 1
lq

β2
0γ

2
0

0 0 0 0 0 1

; (29)

where:
kq =

gc

p
× 10−3m−2 , (30)

c is the speed of light in metres per second, p is the magnitude of the momentum of the particle in MeV/c,
and the field gradient, g, is given in T/m. As before, β0 is the relativistic velocity of the reference particle and
γ0 = (1− β2

0)
− 1

2 . The increment in the reference particle position is:

δs = lq . (31)

It is important to include a description of the effect of dispersion on beam transport through the LhARA beam
line since the laser-driven proton and ion source provides a broad energy spectrum. Reference [4] describes two
methods for the description of dispersion in a linear approximation. The first is to use the reference momentum

6

to calculate the quadrupole focusing strength (k0q = gc
p0
×10−3 m−2) and to include terms in the expressions for

x, x′, y, and y′ dependent on δ. The second is to use equation 30 to calculate the effective quadrupole focusing
strength, with kq evaluated using p. The second approach has been adopted here.

In the same notation, the transfer matrix for a quadrupole focusing in the yz plane (a “defocusing quadrupole”)
may be written:

T
Dquad

=

cosh(
√

kqlq)
sinh(

√
kqlq)√

kq
0 0 0 0√

kq sinh(
√
kqlq) cosh(

√
kqlq) 0 0 0 0

0 0 cos(
√
kqlq)

sin(
√

kqlq)√
kq

0 0

0 0 −
√

kq sin(
√

kqlq) cos(
√

kqlq) 0 0

0 0 0 0 1
lq

β2
0γ

2
0

0 0 0 0 0 1

. (32)

4.3 Solenoid

The trajectory of a beam particle through a solenoid is determined by the magnetic field strength, Bs, within
the solenoid and the length of the solenoid, ls, measured along its axis. As the particle enters the solenoid,
the fringe field imparts momentum transverse to the axis of the magnet. This results in the particle executing
a helical trajectory, the axis of the helix being parallel to the solenoid axis. The sense of the rotation depends
on the particle charge and the polarity of the field. The helical motion means that the evolution of the particle
motion in the xz plane is coupled with the evolution of the particle motion in the yz plane.

In the “hard-edge” approximation, the magnetic field inside the magnet is given by Bs = (0, 0, Bs0), where
the solenoid axis lies along the zRPLC axis. The solenoid field-strength parameter is then given by:

ks =

[
Bs0c

2p
× 10−3

]2
m−2 ; (33)

where Bs0 is measured in T, p in MeV/c and c in m/s.
The transfer matrix for passage of a positive particle through a solenoid with field pointing in the positive

zRPLC direction may be written:

T
Sol

=

cos2(
√
ksls)

1
2
√
ks

sin(
√
ksls)

1
2 sin(2

√
ksls)

1√
ks

sin2(
√
ksls) 0 0

−
√
ks
2 sin(2

√
ksls) cos2(

√
ksls) −

√
ks sin

2(
√
ksls)

1
2 sin(2

√
ksls) 0 0

−1
2 sin(2

√
ksls) − 1√

ks
sin2(

√
ksls) cos2(

√
ksls)

1
2
√
ks

sin(2
√
ksls) 0 0

√
ks sin

2(
√
ksls) −1

2 sin(2
√
ksls) −

√
ks
2 sin(2

√
ksls) cos2(

√
ksls) 0 0

0 0 0 0 1 l
β2
0γ

2
0

0 0 0 0 0 1

.

(34)
As in the case of the quadrupoles, dispersion is accounted for by using p to calculate ks (equation 33). The
increment in the reference particle position is:

δs = ls . (35)

4.4 Non-neutral (electron) plasma (Gabor) lens

A dense gas of electrons confined in a Penning-Malmberg trap provides an electric field that can be used to
focus a positive ion beam. The electron gas is confined axially in the lens by an electrostatic potential created

7

using a central anode of length lG. The gas is confined radially using the uniform field of a solenoid. Assuming
a uniform electron density, ne, the focusing parameter, kG, may be written:

kG =
e

2ϵ0

mpγ

p2
ne m−2 ; (36)

where e is the charge on the electron, ϵ0 is the permittivity of free space, and mp is the proton mass. As in the
case of the quadrupoles and solenoid, dispersion is accounted for by using p in equation 36. The force on a
particle passing through the electron gas is towards the axis of the lens and is proportional to the radial distance
of the particle from the axis. Focusing is therefore cylindrically symmetric and does not couple motion in the
the xz and yz planes.

In the “hard-edge” approximation, the electric field inside the lens falls to zero at the end of the electron
gas and the contribution of the magnetic field used to confine the electron gas in the transverse direction has a
negligible effect on particles passing through the lens. The transfer matrix for the passage of a positive particle
through the lens may be written:

T
G
=

cos(
√
kGlG)

sin(
√
kGlG)√
kG

0 0 0 0

−√
kG sin(

√
kGlG) cos(

√
kGlG) 0 0 0 0

0 0 cos(
√
kGlG)

sin(
√
kGlG)√
kG

0 0

0 0 −√
kG sin(

√
kGlG) cos(

√
kGlG) 0 0

0 0 0 0 1 l
β2
0γ

2
0

0 0 0 0 0 1

. (37)

The increment in the reference particle position is:

δs = lG . (38)

4.5 Dipole

The reference particle trajectory in the beam-line elements described above passes along the axis of the element.
In contrast, a dipole bends the reference trajectory so that it describes the arc of a circle (see figure 2). The
code provides for transport through a “sector dipole” in the hard-edge approximation. In this case, the field
within the magnet is taken to be constant and parallel to jRPLC, i.e. BD = (0, BD0, 0). No edge focusing is
considered.

The passage of particles through a dipole may be described by defining the parameter, kD:

kD =

[
BD0c

p
× 10−3

]2
m−2 . (39)

The momentum of the reference particle is related to the curvature. ρ, by:

p0 = BD0ρ ; (40)

so:

kD =
1

ρ
; (41)

and the angle ϕ is given by:

ϕ =
lD
ρ

. (42)

8

xRPLC

xRPLC
zRPLC

zRPLC

φ

lD

ρ

Reference particle trajectory

Figure 2: Schematic representation of the passage of the reference particle through a sector dipole. The outline
of the sector dipole is shown by the solid black lines. The trajectory of the reference particle is shown as the
dashed line. The length of the reference-particle trajectory inside the field of the sector dipole is lD. The xRPLC

and zRPLC coordinate axes at the entry and exit of the sector dipole are shown. The radius of curvature of the
reference particle trajectory inside the magnet is ρ and the angle through which the xRPLC is rotated is ϕ.

With these definitions the transfer matrix for passage through a dipole may be written:

T
D
=

cos(ϕ) ρ sin(ϕ) 0 0 0 ρ
β0

(1− cos(ϕ))

− sin(ϕ)
ρ cos(ϕ) 0 0 0 sin(ϕ)

β0

0 0 1 l 0 0

0 0 0 1 0 0

− sin(ϕ)
β0

− ρ
β0

(1− cos(ϕ)) 0 0 1 l
β2γ2 − l−ρ sin(ϕ)

β2
0

0 0 0 0 0 1

. (43)

The increment in the reference particle position is:

δs = lD . (44)

4.6 Cylindrical cavity

Acceleration of particle beams is often achieved by means of structures in which standing electromagnetic
waves are confined within vacuum spaces with conducting walls. These “cavities” are tuned to resonate at a
particular frequency, usually in the microwave frequency range. A “transverse magnetic” (TM) standing wave
may be excited in the “TM010” mode in which the electric field is directed along the axis of the cavity. The
electric field on axis is sinusoidal and oscillates at the resonant frequency of the cavity.

The transfer of energy from the field within the cavity to the beam causes the amplitude of the accelerating
field to drop. This effect, referred to as “beam loading”, can be significant for intense beams. In addition, the
passage of the beam through the cavity excites currents which, in turn, generate fields within the cavity. These
“wake fields” can significantly perturb the accelerating fields present inside the cavity.

9

Neglecting wake fields and the effects of beam loading, the transfer matrix for a cylindrical cavity may be
derived in terms of the cavity voltage, V0. V0 may be defined in terms of the amplitude of the on-axis electric
field, E0, and the length, L, of the cavity:

V0 = E0TL ; (45)

where T is the “transit-time factor” which takes into account the variation in the electric field experienced by
the particle during its passage across the cavity. T is given by:

T =
2πβ0
k2L2

sin

(
kL

2β0

)
. (46)

The linear transfer map for the cylindrical cavity may then be written:

ϕ
end

= T
cav

ϕ
start

+m′
cav, ; (47)

where:

T
cav

=

c⊥ s⊥ 0 0 0 0

−ω2
⊥s⊥ c⊥ 0 0 0 0

0 0 c⊥ s⊥ 0 0

0 0 −ω2
⊥s⊥ c⊥ 0 0

0 0 0 0 c∥
1

β2
0γ

2
0
s∥

0 0 0 0 −β2
0γ

2
0ω

2
∥s∥ c∥

; (48)

and:

mcav =

0

0

0

0(
1− cos

(
ω∥L

)) tanϕ0

k

β2
0γ

2
0ω∥ sin

(
ω∥L

) tanϕ0

k

. (49)

Here, the transverse components of the transfer map has been defined in terms of the parameters:

c⊥ = cos (ω⊥L) ; (50)

s⊥ =
sin (ω⊥L)

ω⊥
and; (51)

ω⊥ = k

√
αRF cosϕ0

2π
; (52)

where:

αRF =
qV0

p0c
. (53)

The longitudinal components of the transfer map are written in terms of the parameters:

c∥ = cos
(
ω∥L

)
; (54)

s∥ =
sin
(
ω∥L

)
ω∥

and; (55)

ω∥ =
k

β0γ0

√
αRF cosϕ0

π
. (56)

10

5 Source

A variety of options for the generation of the particle distribution at source are included in the package (see
section A.4.11. The principal, and the default, option is the target-normal sheath acceleration (TNSA) model
presented in [5] . The implementation of this model is summarised below. The laboratory and RPLC reference
frames coincide at the target, therefore trace- and phase-coordinates are not distinguished in the presentatiaon
of the particle-production model.

5.1 Energy distribution

The typical kinetic energy, K, spectrum produced in target-normal sheath acceleration falls rapidly with kinetic
energy before dropping rapidly to zero above a maximum “cut off” energy Kmax. The kinetic-energy spectrum
of the TNSA model presented in [5] is given by:

dN

dK
=

ne0cstlaserSsheath√
2KTe

exp

(
−
√

2K

Te

)
; (57)

where N is the number of protons or ions produced per unit solid angle, K is the ion kinetic energy, ne0 and
Te are the hot electron density and temperature respectively, cs is the ion acoustic velocity, tlaser is the duration
of the laser pulse, and Ssheath is the effective area over which the TNSA mechanism takes place. The variables
and the units in which they are expressed are presented in table 1.

Equation 57 is based on time-limited fluid-dynamical models which are unable to predict the cut-off kinetic
energy accurately. The cut-off energy is taken to be that given by the model described in [6] in which the
time over which the laser pulse creates the conditions necessary for acceleration is derived. The kinetic energy
cut-off is given by:

Kmax = X2Ki,∞ ; (58)

where X is obtained by solving:

tlaser
t0

= X

(
1 +

1

2

1

1−X2

)
+

1

4
ln

(
1 +X

1−X

)
. (59)

Here t0 is the time over which the ion acceleration may be treated as ballistic and Ki,∞ is given in table 1.
To generate the kinetic energy spectrum, the probability density function, g(K), is defined such that the

probability, δP , of a particle being generated in the interval K → K + δK is given by:

δP = g (K) δK . (60)

g(K) can be written in terms of the differential spectrum given in equation 57 through the introduction of a
normalisation constant N :

g(K) =
1

N
dN

dK
. (61)

The cumulative distribution funtion, G(K), is given by:

G(K) =

∫ Kmax

Kmin

g(K)dK ; (62)

where Kmin is the minimum kinetic energy and the normalisation constant, N , is set so that G(Kmax) = 1.
Carrying out the integration yields:

G(K) =
2

N
ne0cstlaserSsheath√

2Te

√
Te

2

[
exp

(
−
√

2Kmin

Te

)
− exp

(
−
√

2K

Te

)]
; (63)

11

Table 1: Parameters present in the analytical expression, equation 57, describing target normal sheath acceler-
ation (TNSA).

Parameter Definition Value Unit

N Ion number - -
K Ion kinetic energy - J
ne0 Hot electron density NE

ctlaserSsheath
pp/m3

Ne Accelerated electron number fElaser
Te

-
Elaser Laser energy 70 J
f Energy conversion efficiency 1.2× 10−15I0.75, max=0.5 -
I Laser intensity 4× 1020 W/cm2

Te Hot electron temperature mec
2[
√

1 + Iλ2

1.37×1018
− 1] J

me Electron mass 9.11× 10−31 Kg
c Speed of light 3× 108 m/s
λ Laser wavelength 0.8 µm

tlaser Laser pulse duration 28× 10−15 s
B Radius of electron bunch B = r0 + dtan(θ) m

Ssheath Electron acceleration area πB2 m2

r0 Laser spot radius
√

Plaser
Iπ , I in W/m2 m

d Target thickness 400− 600× 10−9 m
θ Electron half angle divergence 0.436 rad

Plaser Laser power 2.5× 1015, Plaser =
Elaser
tlaser

W

cs Ion-acoustic velocity (ZkBTe

mi
)
1
2 m/s

Z Ion charge number 1 -
kB Boltzmann constant 1.380649× 10−23 m2kgs−2K−1

mi Proton mass 1.67× 10−27 Kg
PR Relativistic power unit mec2

re
= 8.71× 109 W

re Electron radius 2.82× 10−15 m

Ki,∞ Maximum ion kinetic energy 2Zmec
2
√

fPlaser
PR

MeV

t0 Ballistic time B
v(∞) s

v(∞) Ballistic velocity
√

2Ki,∞
mi

m/s

12

and the normalisation constant is given by:

N = 2
ne0cstlaserSsheath√

2Te

√
Te

2

[
exp

(
−
√

2Kmin

Te

)
− exp

(
−
√

2K

Te

)]
. (64)

The kinetic energy spectrum may now be obtained by choosing a value for G(K) using a probability distri-
bution uniform over the range 0 < G(K) < 1. The generated value of K is obtained by evaluating:

K =

[√
Kmin −

√
Te

2
ln

(
1− G(K)

G(Kmax)

)]2
. (65)

5.2 Angular Distribution

The angular distribution of the flux of protons and ions produced by the TNSA mechanism may be described
as a cone centred on the normal to the foil surface [7]. Radiochromic film has been used to observe the opening
angle, 2α, of the cone as a function of energy. The envelope angle, α, defined such that, at a particular energy,
all particles are contained within ±α(K) of the z axis. The opening angle is observed to decrease as the ion
energy increases.

The distribution of the polar angle, θS , at which particles are produced at the laser-driven source is generated
by defining r′ such that:

r′ =
∂r

∂s
; (66)

where r = sin θS . x′ and y′ are sampled independently from the probability density function:

g(r′) =
3

4r′2m

(
r′2m − r′2

)
; (67)

where r′m = sinα. At low kinetic energy (K ∼ Kmin), α(K) is taken to be ∼ 20◦. α(K) is assumed to
decrease linearly with energy such that:

α(K) = 20◦ − 15◦
K

Kmax
; (68)

i.e. α(K) decreases from 20◦ at K = 0 to 5◦ at Kmax. Finally, the azimuthal angle, ϕS , is chose from a
distribution uniform over the range 0 < ϕS < 2π.

5.3 Spatial distribution

The x and y distributions at production are assumed to be independent and Gaussianly distributed with a
standard deviation given by the radius of the laser spot focused on the target.

5.4 Simulated distributions

Distributions 106 protons produced by the TNSA mechanism using the algorithm described above are shown
in figure 4. The parameters used in the algorithm are presented in table 2. The generated distribution of
kinetic energy is in good agreement with the distribution implied by equation 57. The width of the generated
polar-angle distribution is observed to fall with kinetic energy and the kinetic-energy dependence of the RMS
calculated from the generated particles is in good agreement with that expected from equation 68. As a result,
the distribution of θS is approximately Gaussian with a width dominated by the contribution of protons with
kinetic energy close to Kmin. The generated ϕS distribution is flat in the range 0◦ < ϕS < 360◦ and the (x, y)

distribution is Gaussian in both the x and y projections.

13

0 5 10 15 20 25

Kinetic energy (MeV)

104

E
n

tr
ie

s

Generated Distribution

Required Distribution

−0.2 0.0 0.2

r′ (m)

0

10000

20000

30000

40000

E
n

tr
ie

s

0 100 200 300

φS (◦)

0

5000

10000

15000

20000

E
n

tr
ie

s

−0.2 0.0 0.2

x′ (m)

0

10000

20000

30000

40000

E
n

tr
ie

s

−0.2 0.0 0.2

y′ (m)

0

10000

20000

30000

40000

E
n

tr
ie

s

0 5 10 15 20 25

Kinetic energy, K (MeV)

1

2

3

4

R
M

S
θ S

(d
eg

re
es

)

Linear Fit: RMS θS = (−0.126± 0.000)K+(4.42± 0.00)

Expectation: RMS θS = −0.126K+4.42

Figure 3: Kinematic distributions of particles at the point of production. Top: The generated kinetic energy
disribution is shown as the solid histogram. The required distribution (equation 57), normalised to the lowest
kinetic-energy bin, is shown as the solid red line. Second row: Generated r′ and ϕS distributions. Third row:
Generataed x′ and y′ distributions. Bottom: RMS of the θS distribution versus kinetic energy. The solid circles
are calculated using slices of width 0.15 MeV. The red line shows the result of a straight line fit to the data. The
expected dependence from integration of equation 68 is presented in the legend.

14

−1 0 1

x (m) ×10−5

−1

0

1

2
y

(m
)

×10−5

100

101

102

103

10 20

Kinetic energy (MeV)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

θ S
(◦

)

100

101

102

103

−2 −1 0 1 2

x (m) ×10−5

0

10000

20000

30000

40000

50000

60000

70000

E
n

tr
ie

s

−2 −1 0 1 2

y (m) ×10−5

0

10000

20000

30000

40000

50000

60000

70000

80000

E
n

tr
ie

s

−0.100−0.075−0.050−0.025 0.000 0.025

δ (m)

0

20000

40000

60000

80000

100000

120000

E
n

tr
ie

s

0 5 10 15 20

θS (◦)

0

5000

10000

15000

20000

25000

30000E
n

tr
ie

s

Figure 4: Top left: Generated (x, y) distribution of the particle-production point. Top right: The distribution
of θS versus kinetic energy. Centre left, right: Gemerated disributions of x′ and y′. Bottom left: Generated
distribution of δ. Bottom right: Generated distribution of θS .

15

Table 2: Parameterised laser driven

Parameter Value Unit
σx 4e-06 µm
σy 4e-06 µm
cos θS |min 0.998
Kmin 1.0 MeV
Kmax 25.0 MeV
nPnts 1000
Laser power 2.5× 1015 W
Laser energy 70.0 J
Laser wavelength 0.8 µm
Laser pulse duration 2.8e-14 s
Laser spot size 4e-07 µm
Laser intensity 4e+20 J/m2

Electron divergence angle 25.0 degrees
RMS θS at K = 0MeV 20 degrees
Scaled slope of RMS θS versus K 15 degrees

6 Beam-line specification and scripts

6.1 Beam-line specification

The specification is defined in the form of a parameter table. The table is loaded using a plain text file in CSV
format. An example, specifying the PoPLaR beam line is shown in table 3. The simplest way to generate the
CSV file is to use Excel to manipulate one of the examples provided in the 11-Parameters directory of the
LinearOptics package. The parameter table is organised in 8 columns:
Stage: (integer) allows stages in the beam line to be defined. The number is arbitrary and is used only in

the generation of a unique name for each element. Stage can be defined for clarity in labelling and
presentation.

Section: (string) allows sections in the beam line to be distinguished. As in the case of Stage, Section
may be defined for clarity and convenience. Section is used in the generation of the unique name of a
particular element of the beam line.

Element: (string) indicates that the line will define one parameter for the particular beam-line element
“Element”. Each beam-line element is specified by a series of consecutive lines, each line defining one
of the parameters that specifies the element. Examples of the lines required to specify each element are
given in table 3.

Type: (string) specifies the type of Element that is to be used. For example, an Aperture along the
beam line may be circular, elliptical, or rectangular. The Type keyword allows the required “type” of a
particular beam-line element to be specified.

Parameter: (string) defines the parameter the value of which is specified by the line. For example, the
length of an element is specified by setting the Parameter field to “Length”.

Value: (float, integer) value of the parameter.
Unit: (string) unit in which parameter is specified. Presently the code does not require Unit to be specified,

it is included to record the unit of the value.
Comment: (string) free format comment.

16

Table 3: Example beam-line specification file in Excel (xlsx) format.

Stage Section Element Type Parameter Value Unit Comment
0 Facility Global Name Name PoPLaR
0 Facility Global Reference particle Kinetic energy 10 MeV
0 Facility Global Vacuum chamber Mother volume radius 0.5 m
1 Source Source Parameterised TNSA SourceMode 0 Mode
1 Source Source Parameterised TNSA SigmaX 0.000004 m Gaussian width, x
1 Source Source Parameterised TNSA SigmaY 0.000004 m Gaussian width, y
1 Source Source Parameterised TNSA Emin 1 MeV Minimum of energy distribution
1 Source Source Parameterised TNSA Emax 25 MeV Maximum of energy distribution
1 Source Source Parameterised TNSA nPnts 1000 Number of points to sample for integration of PDF
1 Source Source Parameterised TNSA MinCTheta 0.999691155 Maximum theta for flat cos theta
1 Source Source Parameterised TNSA Power 2.5E+15 W Laser power
1 Source Source Parameterised TNSA Energy 70 J Laser energy
1 Source Source Parameterised TNSA Wavelength 0.8 um Laser wavelength
1 Source Source Parameterised TNSA Duration 2.80E-14 s Laser pulse duration
1 Source Source Parameterised TNSA Thickness 0.0000004 m Target thickness
1 Source Source Parameterised TNSA Intensity 4.00E+20 W/cm2 Laser intensity
1 Source Source Parameterised TNSA DivAngle 25 degrees Electron divergence angle
1 Nozzle Drift Length 0.03 m
1 Nozzle Aperture Circular Radius 0.002 m
1 Nozzle Drift Length 0.003 m
1 Nozzle Aperture Circular Radius 0.002 m
1 Capture Drift Length 0.005 m
1 Capture Aperture Circular Radius 0.01 m
1 Capture Fquad Length 0.04 m
1 Capture Fquad Strength 150 m
1 Capture Aperture Circular Radius 0.01 m
1 Capture Drift Length 0.005 m
1 Capture Aperture Circular Radius 0.01 m
1 Capture Dquad Length 0.04 m
1 Capture Dquad Strength 150 m
1 Capture Aperture Circular Radius 0.01 m
1 Capture Drift Length 1.7 m

The beam line is built by reading the file sequentially from the top. After the header fields, the first lines
specify the Facility, giving its Name, the kinetic energy of the reference particle and radius of the “mother
volume”. The mother volume is a cylinder around the beam line, a particle hitting the boundary of the cylindri-
cal volume is not propagated further along the beam line. The lines which follow specify each element of the
beam line in turn, grouping them by Stage and Section as requured.

6.2 Scripts

Scripts to perform common tasks are provided in the 03-Scripts directory. The scripts and the tasks they
perform are;
runBeamSim.py -b <beamlinefile> -i <inputfile> -o <outputfile> -n <nEvts>

uses the beam line specified in <beamlinefile> to generate <nEvts> and propagate them down the
beam line. The output is written to <outputfile> in the format defined in the BeamIO class (see ap-
pendix A). If specified, <inputfile> is a BeamIO data file. In this case, beam transport starts from the
most downstream element of the beam line defined in <inputfile>. Only one of <beamlinefile>
and <inputfile> may be specified.

readBeamSim.py -i <inputfile> -o <outputfile> -n <nEvts>

reads <nEvts> events from the BeamIO-format data file <inputfile>. Two PDF files are written to
99-Scratch. The first, ParticleProgressionPlot.pdf, contains plots of the transverse trace
space coordinates of the particles at the exit of each beam line element. The second, ParticleLongiProgressionPlot.pdf,

17

contains plots of the longitudinal trace space coordinates of the particles at the exit of each beam line
element. The option -o <outputfile> has not yet been implemented.

plotBeam.py -i <inputfile> -n <nEvts> -o <outputfile>

-l <startlocation> [-b <beamlinefile>]

calculates the covariance matrix of the trace-space coordinates at the exit from each beam-line element
and uses these covariance matrices to calculate the RMS beam size and Twiss parameters. A PDF

file, BeamProgress.pdf, showing the evolution of these quantities along the beam line is written
to 99-Scratch. The calculations are performed on <nEvts> read from <inputfile>. If speci-
fied, a CSV file containing a summary of the beam evolution is written to <outputfile>. Optionally,
if -l is specified, the beam line evolution will be plotted from from location <startlocation>. The
option -b <beamlinefile> is retained in case early versions of BeamIO-format data files are to be
read.

plotextrapolatedBeam.py -i <inputfile> -n <nEvts> -o <outputfile>

-l <startlocation> [-b <beamlinefile>]

calculates the covariance matrix of the beam at location <startlocation> and then calculates the
evolution of the covariance matrix and Twiss parameters using the beam-line element transfer matrices.
The PDF file, extrapolatedBeamProgress.pdf, is created to contain plots of the beam evolu-
tion. If <startlocation> is not specified, the covariance matrix is calculated at the first element of
the beam line and the propogation of the beam envelope starts at the beginning of the beam line. The
meaning of the other switches are as for plotBeam.py.

2BDSIM.py -i <inputfile> -o <outputfile> -l <start location> -n <nEvts>

reads <nEvts> events from the BeamIO-format file <inputfile> and writes the ascii file <output-
file> in the format required by BDSIM. If specified, the BDSIM-format file is generated at location
<start location>. If <start location> is not specified, the BDSIM-format is created with
particles at the end of the beam line.

Acknowledgements

It is a pleasure to acknowledge the help and support of the many friends and colleagues who have given time
and energy to the development and debugging of the code. Particular thanks go to P. Kyberd and D. Whit house
who each have spent time on the code and its documentation. Thanks to to S. Fayer who has provided Unix
and system support.

18

References

[1] G. Aymar, T. Becker, et al., “LhARA: The Laser-hybrid Accelerator for Radiobiological Applications,”
Frontiers in Physics 8 (2020) .
https://www.frontiersin.org/articles/10.3389/fphy.2020.567738.

[2] The LhARA consortium, “The Laser-hybrid Accelerator for Radiobiological Applications,” Tech. Rep.
CCAP-TN-01, The Centre for the Clinical Application of Particles, Imperial College London, 2020.
https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/

Notes/CCAP-TN-01.pdf.

[3] The LhARA collaboration, “Baseline for the LhARA design update,” Tech. Rep. CCAP-TN-11, The
Centre for the Clinical Application of Particles, Imperial College London, 2022.
https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/

Notes/CCAP-TN-11-LhARA-Design-Baseline.pdf.

[4] A. Wolski, Beam dynamics in high energy particle accelerators. Imperial College Press, 57 Shelton
Street, Covent Garden, London WC2H 9HE, 2014.

[5] J. Fuchs, P. Antici, et al., “Laser-driven proton scaling laws and new paths towards energy increase,”
Nature Physics 2 (01, 2006) .

[6] J. Schreiber, F. Bell, et al., “Analytical Model for Ion Acceleration by High-Intensity Laser Pulses,”
Physical review letters 97 (08, 2006) 045005.

[7] F. Nürnberg, M. Schollmeier, et al., “Radiochromic film imaging spectroscopy of laser-accelerated proton
beams,” Review of Scientific Instruments 80 no. 3, (03, 2009) 033301.
https://doi.org/10.1063/1.3086424.

19

https://dx.doi.org/10.3389/fphy.2020.567738
https://www.frontiersin.org/articles/10.3389/fphy.2020.567738
https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-01.pdf
https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-01.pdf
https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-11-LhARA-Design-Baseline.pdf
https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-11-LhARA-Design-Baseline.pdf
https://dx.doi.org/10.1038/nphys199
https://dx.doi.org/10.1103/PhysRevLett.97.045005
https://dx.doi.org/10.1063/1.3086424
https://doi.org/10.1063/1.3086424

A Class and data structures

The linear optics package has been written in object-oriented Python and is broken down in four principal
modules:

• BeamLineElement: provides the various beam-line elements required to build a description of the
beam line. Each individual element, such as a drift, quadrupole, etc., is described in a class derived from
the BeamLineElement parent class.

• BeamLine: provides code to assemble the elements into a coherent beam line. BeamLine is a sin-
gleton class to ensure that two beam lines can not be simulated in a single run of the package. The
extrapolateBeam class is derived from the Beam class to handle the propagation of beam envelopes
without the need to track individual particles.

• Beam: provides code to calculate ensemble properties of the beam such as emittance. The ensemble
properties are stored as instance attributes of the Beam class.

• Particle: provides code to record beam particles at positions along the beam line. The module pro-
vides the singleton ReferenceParticle class derived from the Particle class.

The relationships between the principal modules is illustrated in figure 5. The single BeamLine instance
represents a beam line made up of many BeamLineElements (indicated by the double-headed arrow). In
turn, many beams may be passed through the single BeamLine instance.

Other modules: BeamIO, LaTeX, PhysicalConstants, Report, Simulation, UserFramework,
and Visualise support the principal modules or provide services. The data structure is implemented as
attributes of the instances of the various classes. This section describes the implementation of the various
modules, the classes of which they are composed, and how access to the data is provided.

Each class has methods by which to access a list of the class instances and a Boolean flag by which to
generate debug print out (see table 4).

Table 4: Methods by which to set and access class attributes.

Method Argument Return Comment
getinstances() List of instances of class For singleton classes such as BeamLine,

getinstances() returns a single instance
rather than a list.

setDebug(Debug) Boolean Sets flag to generate debug print-out
getDebug() Boolean debug flag If True, generate debug print-out
setAll2None() Set all instance attributes to None at start of

instantiation.
SummaryStr() String Text sring to record parameters in debug print

out.

20

Beam BeamLine BeamLineElement

extrapolateBeam

Particle

ReferenceParticle

Figure 5: Schematc diagram of the relationships between the principal classes that make up the linear optics
package. The double-headed arrows indicate a many-to-one relationship between the objects; the arrow head
points to the object which has only one instance. The classes indicated in grey are derived from the class
indicated in black over which they are plotted.

A.1 BeamLine

BeamLine is a singleton class that sets up the beam line geometry and provides methods to track particles
through the beam line using the transfer matarices defined in section A.4. The beam-line geometry is provided
in the form of a “csv” file read using pandas. The format of the “csv” file is defined in section ??. Alterna-
tively, if a data file written using the BeamIO package is being read, the beam-line geometry is read from the
top of the data file. The instance of the BeamLine class is created when the first record of the data file is read.

A.1.1 Instantiation

The call to instantiate the BeamLineElenent class is:

BeamLine(BeamLineSpecificationCSVfile, readDataFile)

BeamLineSpecificationCSVfile is a the full path of the CSV file containing the beam-line specifi-
ciation. readDataFile is a boolean flag. If readDataFile is set to True, then the BeamLine in-
stance will be created and the beam-line geometry will be read from the header of the BeamIO data file. If
readDataFile is not set or is set to False, the beam-line geometry will be read from
BeamLineSpecificationCSVfile.

A.1.2 Instance attributes and access methods

The instance attributes are presented in table 5 and the access methods are summarised in table 6.

A.1.3 Processing methods

Table 7 presents the processing methods provided in the BeamLine class.

21

Table 5: Definition of attributes of instances of the BeamLine class.

Attribute Type Comment
BeamLineSpecificationCSVfile∗ path Full path to beam-line specification csv file.
BeamLineParamPandasInstance dataframe Pandas data frame containing beam-line specification.
Element list List of instances of BeamLineElement class con-

taining pointers to the elements that make up the beam
line.

A.1.4 I/o methods

Table 8 presents the i/o methods provided in the BeamLine class.

A.1.5 Utilities

Table 9 presents the utilities provided in the BeamLine class.

22

Ta
bl

e
6:

D
efi

ni
tio

n
of

ac
ce

ss
m

et
ho

ds
fo

rt
he
B
e
a
m
L
i
n
e

cl
as

s.

Se
tm

et
ho

d
G

et
m

et
ho

d
C

om
m

en
t

s
e
t
S
r
c
T
r
c
S
p
c
(
S
r
c
T
r
c
S
p
c
)

g
e
t
S
r
c
T
r
c
S
p
c
(
)

Se
t

tr
ac

e
sp

ac
e

at
so

ur
ce

;
Sr

cT
rc

Sp
c

pr
es

en
te

d
as

(
1
,
6
)

n
p
.
n
d
a
r
r
a
y

.
g
e
t
i
n
s
a
n
c
e
(
)

G
et

in
st

an
ce

of
B
e
a
m
L
i
n
e

cl
as

s.
B
e
a
m
L
i
n
e
S
p
e
c
i
f
i
c
a
t
i
o
n
C
S
V
f
i
l
e
(
)

G
et

be
am

lin
e

sp
ec

ifi
ca

tio
n

cs
v

fil
e.

(
g
e
t
B
e
a
m
L
i
n
e
P
a
r
a
m
P
a
n
d
a
s
)

G
et

pa
nd

as
da

tf
ro

m
co

nt
ai

ni
ng

be
am

-l
in

e
sp

ec
ifi

ca
tio

n.
g
e
t
E
l
e
m
e
n
t
(
)

ge
tl

is
to

fB
e
a
m
L
i
n
e
E
l
e
m
e
n
t

in
st

an
ce

s.

23

Table
7:

Processing
m

ethods
provided

by
the

B
e
a
m
L
i
n
e

class.

M
ethod

A
rgum

ent(s)
R

eturn
C

om
m

ent
a
d
d
B
e
a
m
L
i
n
e
(
)

S
u
c
c
e
s
s

L
oops

through
pandas

data
fram

e
and

m
anages

parsing
and

in-
stanciation

ofthe
beam

line
elem

ents
defined

in
the

specification
c
s
v

file.
R

eturns
S
u
c
c
e
s
s

(bool)
w

hich
is
T
r
u
e

if
the

beam
-

line
has

been
setup

O
K

and
is
F
a
l
s
e

otherw
ise.

a
d
d
F
a
c
i
l
i
t
y
(
)

M
anages

the
extraction

of
the

facility
param

eters
from

the
pandas

data
fram

e
and

the
creation

of
the

single
instance

of
F
a
c
i
l
i
t
y
(
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t
).

a
d
d
S
o
u
r
c
e
(
)

M
anages

the
extraction

of
the

source
param

eters
from

the
pan-

das
data

fram
e

and
the

creation
of

the
single

instance
of

S
o
u
r
c
e
(
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t
).

p
a
r
s
e
F
a
c
i
l
i
t
y
(
)

N
a
m
e,K

0,V
C
M
V
r

Parses
pandas

data
frane

to
extract

facility
param

eters.
R

eturns
the

facility
N
a
m
e

(str),the
kinetic

energy
of

the
reference

parti-
cle,

K
0

(float)
in

M
eV,and

the
vacuum

cham
ber

m
other

volum
e

radius,V
C
M
V
r

(float)in
m

.
p
a
r
s
e
S
o
u
r
c
e
(
)

N
a
m
e,M

o
d
e,P

a
r
a
m

Parses
pandas

data
frane

to
extract

source
param

eters.
R

eturns
N
a
m
e

(str),
M
o
d
e

(int)
P
a
r
a
m

(list)
containing

the
param

eters
required

to
instanciate

source
M
o
d
e.

a
d
d
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t
(
i
B
L
E
)

A
dds

B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

instance
i
B
L
E

to
the

list
of

in-
stances

of
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

thatm
ake

up
the

beam
line.

c
h
e
c
k
C
o
n
s
i
s
t
e
n
c
y
(
)

C
o
n
s
i
s
t
e
n
t

C
hecks

the
consistency

of
the

beam
line

representation
in

m
em

-
ory

w
ith

that
requested

in
the

specification
c
s
v

file.
R

eturns
C
o
n
s
i
s
t
e
n
t

(bool)
w

hich
is
T
r
u
e

if
the

beam
line

is
consis-

tentis
F
a
l
s
e

otherw
ise.

t
r
a
c
k
B
e
a
m
n
(
N
E
v
t
s
,
p
a
r
t
i
c
l
e
F
I
L
E
)

G
enerates

N
E
v
t
s

(int)
particles

and
tracks

them
through

the
beam

line.

24

Table 8: I/o methods provided by the BeamLine class.

Method Argument(s) Return Comment
csv2pandas(csvFILE) Path pandas dataframe Read CSV file to create pandas data frame.

csvFILE (path) is the full path to the csv
pandasBeamLine() pandas dataframe Create pandas dataframe from BeamLine

instance.
getHeader() List Prepares list of header fields for

pandasBeamLine.
readBeamLine(file) Path Boolean Called from BeamIO. Reads BeamLine

from data file.

Table 9: Utilities provided by the BeamLine class.

Method Argument(s) Return Comment
cleaninstance() Remove BeamLine instance.
fixsz() List Loop through BeamLineElement in-

stances to set s and z at exit.

25

A.2 Particle and ReferenceParticle

The Particle class provides methods to transport particles through the beam line. The trace and phase space
is recorded at the start and end of each element. The ReferenceParticle derived class is a singleton and
records the trajectory of the reference particle.

A.2.1 Particle

A.2.1.1 Instantiation
The call to instantiate the Particle class is:

Particle(Species)

Species, the type of particle to be propagated, is a string containing the particle name. At present valid
particle species are proton, pion, and muon.

A.2.1.2 Instance attributes and access methods
The instance attributes are presented in table 10 and the access methods are summarised in table 11.

Table 10: Definition of attributes of instances of the Particle class.

Attribute Type Comment
Species str Particle species; proton, muon or pion.
Location list List of strings containing the unique Name of the BeamLineElement at the

particle position is reported.
s list List of floats recording s coordinate at which particle position is reported.
TraceSpace list List of np.ndarray containing 6D trace space of particle at s.
PhaseSpace list List of np.ndarray containing 6D phase space (RPLC) of particle at s.
LabPhaseSpace list List of np.ndarray containing 6D phase space (Lab) of particle at s.

A.2.1.3 Processing methods
Table 12 presents the processing methods provided in the Particle class.

A.2.1.4 I/o methods
The i/o methods provided by the Particle class are listed in table 13.

A.2.1.5 Utilities
The utilities provided by the Particle class are listed in table 14.

26

Ta
bl

e
11

:
D

efi
ni

tio
n

of
ac

ce
ss

m
et

ho
ds

fo
rt

he
P
a
r
t
i
c
l
e

cl
as

s.

Se
tm

et
ho

d
G

et
m

et
ho

d
C

om
m

en
t

s
e
t
S
p
e
c
i
e
s

g
e
t
S
p
e
c
i
e
s

Se
t/g

et
pa

rt
ic

le
sp

ec
ie

s.
s
e
t
L
o
c
a
t
i
o
n

g
e
t
L
o
c
a
t
i
o
n

Se
t/g

et
lis

to
fl

oc
at

io
ns

lo
ca

tio
n.

s
e
t
s

g
e
t
s

Se
t/g

et
lis

to
fs

co
or

di
na

te
s.

s
e
t
T
r
a
c
e
S
p
a
c
e

g
e
t
T
r
a
c
e
S
p
a
c
e

Se
t/g

et
lis

to
ft

ra
ce

-s
pa

ce
ve

ct
or

s.
s
e
t
R
P
L
C
P
h
a
s
e
S
p
a
c
e

s
e
t
R
P
L
C
P
h
a
s
e
S
p
a
c
e

Se
t/g

et
lis

to
fp

ha
se

-s
pa

ce
ve

ct
ir

s
in

R
PL

C
co

or
di

na
te

s.
s
e
t
L
a
b
P
h
a
s
e
S
p
a
c
e

g
e
t
L
a
b
P
h
a
s
e
S
p
a
c
e

Se
t/g

et
lis

to
fp

ha
se

-s
pa

ce
ve

ct
ir

s
in

L
ab

co
or

di
na

te
s.

r
e
s
e
t
P
a
r
t
i
c
l
e
I
n
s
t
a
n
c
e
s

R
es

et
s

lis
to

f
pa

rt
ic

le
in

st
an

ce
s

pr
es

er
vi

ng
re

fe
re

nc
e

pa
rt

i-
cl

e
as

fir
ti

ns
ta

nc
e

in
th

e
lis

t.
r
e
c
o
r
d
P
a
r
t
i
c
l
e
(
L
o
c
,
z
,
s
,
T
r
c
S
p
c
)

R
ec

or
ds

pa
rt

ic
le

at
tr

ib
ut

es
.

A
rg

um
en

ts
:
L
o
c
=

L
oc

at
io

n,
z
=

z
,s

=
s,

an
d
T
r
c
S
p
c
=

tr
ac

e
sp

ac
e.

s
e
t
S
o
u
r
c
e
T
r
a
c
e
S
p
a
c
e
(
T
r
c
S
p
c
)

Se
ts
T
r
c
S
p
c
=

tr
ac

e
sp

ac
e

at
so

ur
ce

.

27

Table
12:

Processing
m

ethods
provided

by
the

P
a
r
t
i
c
l
e

class.

M
ethod

A
rgum

ent(s)
R

eturn
C

om
m

ent
f
i
l
l
P
h
a
s
e
S
p
a
c
e
A
l
l
(
)

B
oolean

Fillphase
space

forallP
a
r
t
i
c
l
e

instances.C
lass

M
ethod.R

e-
turn

T
r
u
e

ifsuccessful.
f
i
l
l
P
h
a
s
e
S
p
a
c
e
(
)

B
oolean

Fillphase
space

for
current

P
a
r
t
i
c
l
e

instance.
R

eturn
T
r
u
e

ifsuccessful.
i
n
i
t
i
a
l
i
s
e
S
u
m
s
(
)

Initialises
sum

s
used

to
calculate

covariance
m

atrix.
i
n
c
r
e
m
e
n
t
S
u
m
s
(
i
P
r
t
c
l
)

P
a
r
t
i
c
l
e

instance
Increm

entsum
s

used
to

calculate
covariance

m
atrix.

c
a
l
c
C
o
v
a
r
i
a
n
c
e
M
a
t
r
i
x
(
)

C
alculate

covariance
m

atrix.
e
v
a
l
u
a
t
e
B
e
a
m
(
)

W
ork

through
locationsand

calculate
param

etersfrom
covariance

m
atrix.

c
a
l
c
R
P
L
C
P
h
a
s
e
S
p
a
c
e
(
n
L
o
c
)

Int
np.ndarray

C
alculate

and
return

phase
space

in
R

PL
C

s
atlocation

n
L
o
c.

R
P
L
C
T
r
a
c
e
S
p
a
c
e
2
P
h
a
s
e
S
p
a
c
e
(
T
r
c
S
p
c
)

np.ndarray
np.ndarray

Transform
trace

space
to

phase
space

in
R

PL
C

s.
R
P
L
C
P
h
a
s
e
S
p
a
c
e
2
T
r
a
c
e
S
p
a
c
e
(
T
r
c
S
p
c
)

np.ndarray
np.ndarray

Transform
phase

space
to

trace
space

in
R

PL
C

s.

28

Ta
bl

e
13

:
I/

o
m

et
ho

ds
pr

ov
id

ed
by

th
e
P
a
r
t
i
c
l
e

cl
as

s.

M
et

ho
d

A
rg

um
en

t(
s)

R
et

ur
n

C
om

m
en

t
c
r
e
a
t
e
P
a
r
t
i
c
l
e
F
i
l
e
(
p
a
t
h
,
f
i
l
e
)

Pa
th

,S
tr

Pa
th

C
la

ss
m

et
ho

d,
ke

pt
fo

rb
ac

kw
ar

d
co

m
pa

tib
ili

ty
.

f
l
u
s
h
N
c
l
o
s
e
P
a
r
t
i
c
l
e
F
i
l
e
(
f
i
l
e
)

Pa
th

C
la

ss
m

et
ho

d,
ke

pt
fo

rb
ac

kw
ar

d
co

m
pa

tib
ili

ty
.

o
p
e
n
P
a
r
t
i
c
l
e
F
i
l
e
(
p
a
t
h
,
f
i
l
e
)

Pa
th

,S
tr

C
la

ss
m

et
ho

d,
ke

pt
fo

rb
ac

kw
ar

d
co

m
pa

tib
ili

ty
.

c
l
o
s
e
P
a
r
t
i
c
l
e
F
i
l
e
(
p
a
t
h
,
f
i
l
e
)

Pa
th

,S
tr

C
la

ss
m

et
ho

d,
ke

pt
fo

rb
ac

kw
ar

d
co

m
pa

tib
ili

ty
.

r
e
a
d
P
a
r
t
i
c
l
e
(
f
i
l
e
)

Pa
th

B
oo

le
an

R
ea

d
pa

rt
ic

le
fr

om
in

pu
ts

tr
ea

m
.

C
al

le
d

fr
om

B
e
a
m
I
O

.f
i
l
e

is
fu

ll
pa

th
to

fil
e.

R
et

ur
n
T
r
u
e

if
en

d
of

fil
e.

w
r
i
t
e
P
a
r
t
i
c
l
e
(
f
i
l
e
,
c
l
e
a
n
)

Pa
th

,b
oo

le
an

W
ri

te
pa

rt
ic

le
to

ou
tp

ut
st

re
am

.
f
i
l
e

is
fu

ll
pa

th
to

fil
e.

If
c
l
e
a
n

,t
he

n
cl

ea
n

pa
rt

ic
le

in
st

an
ce

af
te

rw
ri

te
.

w
r
i
t
e
P
a
r
t
i
c
l
e
B
D
S
I
M
(
f
i
l
e
,
i
L
o
c
,
c
l
e
a
n
)

Pa
th

,i
nt

eg
er

,b
oo

le
an

W
ri

te
pa

rt
ic

le
to

B
D

SI
M

as
ci

ifi
le

.f
i
l
e

is
fu

ll
pa

th
to

fil
e.
i
L
o
c

is
th

e
lo

ca
tio

n
al

on
g

th
e

be
am

m
lin

e
at

w
hi

ch
to

w
ri

te
th

e
pa

rt
ic

le
co

or
di

na
te

s.
If
c
l
e
a
n

,t
he

n
cl

ea
n

pa
rt

ic
le

in
st

an
ce

af
te

rw
ri

te
.

29

Table
14:

U
tilities

provided
by

the
P
a
r
t
i
c
l
e

class.

M
ethod

A
rgum

ent(s)
R

eturn
C

om
m

ent
c
l
e
a
n
A
l
l
P
a
r
t
i
c
l
e
s
(
)

D
elete

all
P
a
r
t
i
c
l
e

instances
including

R
e
f
e
r
e
n
c
e
P
a
r
t
i
c
l
e.

c
l
e
a
n
P
a
r
t
i
c
l
e
s
(
)

D
elete

all
P
a
r
t
i
c
l
e

instances
except

R
e
f
e
r
e
n
c
e
P
a
r
t
i
c
l
e.

p
l
o
t
T
r
a
c
e
S
p
a
c
e
P
r
o
g
r
e
s
s
i
o
n
(
)

Plottransverse
trace

space
ateach

location.C
lassm

ethod.W
rites

file
to
9
9
-
S
c
r
a
t
c
h
/.

p
l
o
t
L
o
n
g
i
t
u
d
i
n
a
l
T
r
a
c
e
S
p
a
c
e
P
r
o
g
r
e
s
s
i
o
n
(
)

Plot
longitudinal

trace
space

at
each

location.
C

lass
m

ethod.
W

rites
file

to
9
9
-
S
c
r
a
t
c
h
/.

p
r
i
n
t
P
r
o
g
r
e
s
s
i
o
n
(
)

Printparticle
param

eters
ateach

location.
g
e
t
L
i
n
e
s
(
)

R
eturns

lines
to

be
used

to
create

sum
m

ary
pandas

data
fram

e.
c
r
e
a
t
e
R
e
p
o
r
t
(
)

C
reates

c
s
v

file
containing

sum
m

ary
ofbeam

progression.

30

A.2.2 ReferenceParticle

A.2.2.1 Instantiation
ReferenceParticle is a singleton derived class. The call to instantiate the ReferenceParticle class
is:

ReferenceParticle(Species)

Species, the type of particle to be propagated, is a string containing the particle name. At present valid
particle species are proton, pion, and muon.

A.2.2.2 Instance attributes and access methods
In addition to the instance attributes inheritted from the parent class, the ReferenceParticle class pro-

vides the instance attributes presented in table 15 and the access methods are summarised in table 16.

Table 15: Definition of attributes of instances of the ReferenceParticle class.

Attribute Type Comment
sIn[] list List of floats containing the s coordinates at the entrance to the beam line

elements along the locus of the reference particle trajectory.
sOut[] list List of floats containing the s coordinates at the exit to the beam line elements

along the locus of the reference particle trajectory.
RrIn[] list List of ndarrays containing the four-vector position in laboratory coordinates at

the entrance to the beam line elements along the locus of the reference particle
trajectory.

RrOut[] list List of ndarrays containing the four-vector position in laboratory coordinates
at the exit to the beam line elements along the locus of the reference particle
trajectory.

PrIn[] list List of ndarrays containing the four-vector momentum in laboratory coordi-
nates at the entrance to the beam line elements along the locus of the reference
particle trajectory.

PrOut[] list List of ndarrays containing the four-vector momentum in laboratory coordi-
nates at the exit to the beam line elements along the locus of the reference
particle trajectory.

Rot2LabIn[] list List of ndarrays containing the rotation matrices taking RPLC to laboratory
coordinates at the entrance to the beam line elements along the locus of the
reference particle trajectory.

Rot2LabOut[] list List of ndarrays containing the rotation matrices taking RPLC to laboratory
coordinates at the exit to the beam line elements along the locus of the refer-
ence particle trajectory.

31

Table 16: Definition of access methods for the ReferenceParticle class.

Set method Get method Comment
setRPDebug getRPDebug Set/get ReferenceParticle debug flag.

setsIn getsIn Set/get sIn

setsOut getsOut Set/get sOut

setRrIn getRrIn Set/get RrIn

setRrOut getRrOut Set/get RrOut

setPrIn getPrIn Set/get PrIn

setPrOut getPrOut Set/get PrOut

getMomentumIn(iLoc) Get magnitude of three-vector momentum at
entrance of location iLoc

getMomentumOut(iLoc) Get magnitude of three-vector momentum at
exit of location iLoc

setRot2LabIn getRot2LabIn Set/get Rot2LabIn

setRot2LabOut getRot2LabOut Set/get Rot2LabOut

getb0(iLoc) Get β0.
getg0b0(iLoc) Get γ0β0.

setAllRP2None Set all ReferenceParticle attributes to
None.

Table 17: Processing methods provided by the ReferenceParticle class.

Method Argument(s) Return Comment
setReferenceParticleAtSource() boolean Set

ReferenceParticle

attributes at source. Re-
turns True if success.

setReferenceParticleAtDrift(iBLE) BLE boolean Set
ReferenceParticle

attributes at
BeamLineElement

(BLE) instance iBLE.
Returns True if success.

32

A.2.2.3 Processing methods
Table 17 presents the processing methods provided in the ReferenceParticle class.

A.2.2.4 I/o methods
The ReferenceParticle class provides no additional i/o methods.

A.2.2.5 Utilities
The ReferenceParticle class provides no additional utilities.

A.3 Beam and extrapolateBeam

The Beam class is in some sense a ”sister” class to Particle. Whereas an instance of Particle records the
passage of a particle travelling through the beam line, an instance of Beam records the collective properties
of the beam such as emittance, as the beam progresses through the beam line. The beam parameters reported
in the attributes of an instance of Beam are obtained by summing over nEvtsMax particles to evaluate the
covariance matrices by location.

The extrapolatedBeam class is derived from Beam. An instance of extrapolatedBeam calculates
the covariance matrix at a location along the beam line and then uses the transfer matrices to propagate the
beam envelope.

A.3.1 Beam

A.3.1.1 Instantiation
The call to instantiate the Beam class is:

Beam(InputDatafile, nEvtMax, outputCSVfile, startlocation,

beamlineSpecificationCSVfile))

InputDatafile is either the full path to a data file in one of the formats specified in BeamIO or an instance
of the BeamIO class that refers to an existing data file that can be read. nEvtMax is the maximum number of
events to read or process using the Beam instance. outputCSVfile is the full path to the output file, in CSV
format, contining the beam paramters at the locations traversed by the beam. startlocation is the location
along the beam line at which propagation will start; if startlocation is absent or None propagation will
start at the source. beamlineSpecificationCSVfile is the CSV file specifying the beam line.
beamlineSpecificationCSVfile is kept for backward compatibilty. If the first record of
InputDatafile contains the specification of the beam line, beamlineSpecificationCSVfile is not
required.

A.3.1.2 Instance attributes and access methods
The instance attributes are presented in table 18 and the access methods are summarised in table 19.

A.3.1.3 Processing methods
Table 20 presents the processing methods provided in the Beam class.

A.3.1.4 I/o methods
The Beam class has no i/o methods.

A.3.1.5 Utilities
The utilities provided by the Beam class are listed in table 21.

33

Table
18:

D
efinition

ofattributes
ofinstances

ofthe
B
e
a
m

class.

A
ttribute

Type
C

om
m

ent
I
n
p
u
t
D
a
t
a
F
i
l
e

Path/B
eam

IO
Path

to,or
B
e
a
m
I
O

instance
ofinputfile.

B
e
a
m
L
i
n
e
I
n
s
t
a
n
c
e

B
e
a
m
L
i
n
e

Instance
of
B
e
a
m
L
i
n
e

to
w

hich
the

B
eam

instance
refers.

n
E
v
t
M
a
x

int
M

axim
um

num
berofparticles

to
read

and
process.

o
u
t
p
u
t
C
S
V
f
i
l
e

Path
Path

to
outputC

SV
file

to
contain

beam
parm

eters
by

location.
s
t
a
r
t
l
o
c
a
t
i
o
n

int
L

ocation
atw

hich
to

startbeam
propagation.

B
L
s
p
e
c
C
S
V
f
i
l
e

Path
b
e
a
m
l
i
n
e
S
p
e
c
i
f
i
c
a
t
i
o
n
C
S
V
f
i
l
e,keptforbackw

ard
com

patibility.
L
o
c
a
t
i
o
n
[
i
L
o
c
]

L
ist

L
istoflocations

(int)atw
hich

beam
param

eters
are

recorded.
s
[
i
L
o
c
]

L
ist

L
istof

s
coordinates

ofreference
particle

atlocations
atw

hich
beam

param
e-

ters
are

recorded.
n
P
a
r
t
i
c
l
e
s
[
i
L
o
c
]

L
ist

L
istofnum

berofparticles
(int)recorded

atlocation
i
L
o
c.

C
o
v
M
t
r
x
[
i
L
o
c
]
[
6
,
6
]

L
ist

L
istofcovariance

m
atrices

(ndarray)by
location.

s
i
g
m
a
x
y
[
i
L
o
c
]
[
2
]

L
ist

L
ist

of
σ
x

=
s
i
g
m
a
x
y
[
i
L
o
c
]
[
0
]

and
σ
y

=
s
i
g
m
a
x
y
[
i
L
o
c
]
[
1
]

(float).
e
m
i
t
t
a
n
c
e
[
i
L
o
c
]
[
5
]

L
ist

L
ist

of
em

ittance
by

location:
ϵ
x

=
e
m
i
t
t
a
n
c
e
[
i
L
o
c
]
[
0
],

ϵ
y

=

e
m
i
t
t
a
n
c
e
[
i
L
o
c
]
[
1
],

ϵ
L

=
e
m
i
t
t
a
n
c
e
[
i
L
o
c
]
[
2
],

ϵ
4
D

=

e
m
i
t
t
a
n
c
e
[
i
L
o
c
]
[
3
],ϵ

6
D
=
e
m
i
t
t
a
n
c
e
[
i
L
o
c
]
[
4
].

T
w
i
s
s
[
i
L
o
c
]
[
2
]
[
3
]

L
ist

L
ist

of
Tw

iss
param

eters
by

location:
T
w
i
s
s
[
i
L
o
c
]
[
0
]
[
0
:
2
]

=

[α
x ,β

x ,γ
x],T

w
i
s
s
[
i
L
o
c
]
[
1
]
[
0
:
2
]
=

[α
y ,β

y ,γ
y].

34

Ta
bl

e
19

:
D

efi
ni

tio
n

of
ac

ce
ss

m
et

ho
ds

fo
rt

he
B
e
a
m

cl
as

s.

Se
tm

et
ho

d
G

et
m

et
ho

d
C

om
m

en
t

s
e
t
I
n
p
u
t
D
a
t
a
F
i
l
e

g
e
t
I
n
p
u
t
D
a
t
a
F
i
l
e

Se
tp

at
h

to
in

pu
tfi

le
.

s
e
t
B
e
a
m
I
O
r
e
a
d

g
e
t
B
e
a
m
I
O
r
e
a
d

Se
ti

ns
ta

nc
e

of
B
e
a
m
I
O

fo
ri

np
ut

fil
e.

s
e
t
n
E
v
t
M
a
x

g
e
t
n
E
v
t
M
a
x

Se
tm

ax
im

um
nu

m
be

ro
fp

ar
tic

le
s

to
de

al
w

ith
.

s
e
t
o
u
t
p
u
t
C
S
V
f
i
l
e

g
e
t
o
u
t
p
u
t
C
S
V
f
i
l
e

Se
tp

at
hh

to
ou

tp
ut

C
SV

fil
e.

s
e
t
s
t
a
r
t
l
o
c
a
t
i
o
n

g
e
t
s
t
a
r
t
l
o
c
a
t
i
o
n

Se
ts

ta
rt

lo
ca

tio
n.

s
e
t
b
e
a
m
l
i
n
e
S
p
e
c
i
f
i
c
a
t
i
o
n
C
S
V
f
i
l
e

g
e
t
b
e
a
m
l
i
n
e
S
p
e
c
i
f
i
c
a
t
i
o
n
C
S
V
f
i
l
e

Se
tb

ea
m

lin
e

sp
ec

ifi
ca

tio
n

fil
e.

s
e
t
s

s
e
t
s

Se
ts

by
lo

ca
tio

n.
s
e
t
s
i
g
m
a
x
y

s
e
t
s
i
g
m
a
x
y

Se
tσ

x
,y

by
lo

ca
tio

n.
s
e
t
E
m
i
t
t
a
n
c
e

s
e
t
E
m
i
t
t
a
n
c
e

Se
te

m
itt

an
ce

lis
tb

y
lo

ca
tio

n.
s
e
t
T
w
i
s
s

s
e
t
T
w
i
s
s

Se
tT

w
is

s
pa

ra
m

te
rl

is
tb

y
lo

ca
tio

n.
r
e
s
e
t
B
e
a
m
I
n
s
t
a
n
c
e
s

Se
tl

is
to

fb
ea

m
in

st
an

ce
s

to
[
]

.
g
e
t
C
o
v
S
u
m
s

G
et

lis
to

fs
um

s
us

ed
to

ca
lc

ul
at

e
co

va
ri

an
ce

m
at

ri
ce

s.
g
e
t
C
o
v
M
t
r
x

G
et

lis
to

fc
ov

ar
ia

nc
e

m
at

ri
ce

s
by

lo
ca

tio
n.

g
e
t
n
P
a
r
t
i
c
l
e
s

G
et

nu
m

be
ro

fp
ar

tic
le

s
en

te
ri

ng
co

va
ri

an
ce

su
m

s
by

lo
ca

-
tio

n.
g
e
t
C
o
v
a
r
i
a
n
c
e
M
a
t
r
i
x

G
et

lis
to

fc
ov

ar
ia

nc
e

m
at

ri
ce

s
by

lo
ca

tio
n.

g
e
t
C
o
v
M
t
r
x

G
et

lis
to

fc
ov

ar
ia

nc
e

m
at

ri
ce

s
by

lo
ca

tio
n.

35

Table
20:

Processing
m

ethods
provided

by
the

B
e
a
m

class.

M
ethod

A
rgum

ent(s)
R

eturn
C

om
m

ent
i
n
i
t
i
a
l
i
s
e
S
u
m
s
(
)

Initialise
sum

s
to

be
used

to
calculate

covariance
m

atrices
by

lo-
cation.

i
n
c
f
e
m
e
n
t
S
u
m
s
(
i
P
r
t
c
l
)

Particle
Increm

entsum
sforcovariance

m
atrix

calculation
for

P
a
r
t
i
c
l
e

instance
i
P
r
t
c
l.

c
a
l
c
C
o
v
a
r
i
a
n
c
e
M
a
t
r
i
x
(
)

C
alculate

covariance
m

atrices
by

location.
e
v
a
l
u
a
t
e
B
e
a
m
(
T
r
a
c
k
B
e
a
m
=
F
a
l
s
e
)

boolean
L

oop
over

n
E
v
t
M
a
x

particesto
calculate

beam
param

etersby
lo-

cation.
If
T
r
a
c
k
B
e
a
m

is
True,particles

are
transported

through
the

beam
line.

If
T
r
a
c
k
B
e
a
m

is
False,

covariance
m

atrices
stored

as
B
e
a
m

instance
attributes

are
used.

36

Ta
bl

e
21

:
U

til
iti

es
pr

ov
id

ed
by

th
e
B
e
a
m

cl
as

s.

M
et

ho
d

A
rg

um
en

t(
s)

R
et

ur
n

C
om

m
en

t
c
l
e
a
n
B
e
a
m
s
(
)

bo
ol

ea
n

D
el

et
e

al
lB
e
a
m

in
st

an
ce

s,
re

tu
rn

s
Tr

ue
if

su
cc

es
sf

ul
.

p
r
i
n
t
P
r
o
g
r
e
s
s
i
o
n
(
)

Pr
in

tb
ea

m
pa

ra
m

et
er

s
by

lo
ca

tio
n.

g
e
t
H
e
a
d
e
r
(
)

lis
t

Pr
ep

ar
e

he
ad

er
fo

rC
SV

fil
e

co
nt

ai
ni

ng
be

am
pa

ra
m

et
er

s
by

lo
ca

-
tio

n.
g
e
t
L
i
n
e
s
(
)

lis
t

Pr
ep

ar
e

lin
es

fo
r

C
SV

fil
e

co
nt

ai
ni

ng
be

am
pa

ra
m

et
er

s
by

lo
ca

-
tio

n.
c
r
e
a
t
e
R
e
p
o
r
t
(
)

In
te

rf
ac

e
to
R
e
p
o
r
t

cl
as

s
to

m
ak

e
be

am
pa

ra
m

te
rC

SV
fil

e.
p
l
o
t
B
e
a
m
P
r
o
g
r
e
s
s
i
o
n
(
p
l
o
t
F
I
L
E
)

pa
th

Pl
ot

be
am

pa
ra

m
et

er
s

by
lo

ca
tio

n;
pl

ot
FI

L
E

is
fu

ll
pa

th
to

pl
ot

fil
e.

37

A.3.2 extrapolateBeam

A.3.2.1 Instantiation
The call to instantiate the extrapolateBeam class is:

Beam(InputDatafile, nEvtMax, outputCSVfile, startlocation,

beamlineSpecificationCSVfile)

The arguments are passed directly to a call to instantiate the parent Beam class. In the execution of extrapolateBeam,
the covariance matrices are calculated from nEvtMax at startlocation. If startlocation, the last
location provided in the input data file is used as the source.

A.3.2.2 Instance attributes and access methods
Instance attributes are inheritted from Beam (table 18). Access methods are also inheritted from Beam (ta-

ble 19). The method resetextrapolateBeamInstances is provided to reset only the list of instances
of extrapolateBeam.

A.3.2.3 Processing methods
Table 22 presents the processing methods provided in the extrapolateBeam class.

Table 22: Processing methods provided by the extrapolateBeam class.

Method Argument(s) Return Comment
initialiseSums() Initialise sums to be used to

calculate covariance matrices at
startlocation.

incfementSums(iPrtcl) Particle Increment sums for covari-
ance matrix calculation for
Particle instance iPrtcl

at startlocation.
extrapolateCovarianceMatrix() Extrapolate covariance matrices

along the beam line by location.
extrapolateBeam() Estrapolate beam envelope and

beam parameters along the beam
line by location.

A.3.2.4 I/o methods
The extrapolateBeam class has no i/o methods.

A.3.2.5 Utilities
The utilities provided by the extrapolateBeam class are listed in table 23.

38

Table 23: Utilities provided by the extrapolateBeam class.

Method Argument(s) Return Comment
cleanextrapolateBeams() boolean Delete all extrapolateBeam in-

stances, returns True if successful.

A.4 BeamLineElement

A.4.1 Parent class

A.4.1.1 Instantiation
The call to instantiate the BeamLineElenent class is:

BeamLineElement(Name, rStrt, vStrt, drStrt, dvStrt)

where:
Name: (string) is the unique name of the element;
rStrt: (numpy.ndarray(3)) is the three-vector position in laboratory coordinates of the start of the element;
vStrt: (numpy.ndarray(1,2)) is the polar, θ, and azimuthal, ϕ, angles that define the y (i = 0) and z (i = 1)

axes of the RPLC coordinate system at the start of the element (vStrt = [[i], [θ, ϕ]]);
drStrt: (numpy.ndarray(3)) error in the three-vector position with respect to the nominal position; and
dvStrt: (numpy.ndarray(1,2)) error in the polar and azimuthal angles defining RLPC the y and z axes.

All arguments are required.

A.4.1.2 Instance attributes and access methods
Properties common to all beam-line elements are stored as instance attributes of the parent BeamLineElement
class. The instance attributes are defined in table 24. The attributes are accessed and set using the methods de-
fined in table 25.

A.4.1.3 Processing methods
Table 26 presents the processing methods provided in the BeamLineElement class.

A.4.1.4 I/o methods
Methods to read and write instance attributes to the files defined using the BeamIO package (see section ?? are
provided. The calls are:

readElement(dataFILE) and writeElement(dataFILE) ;

where dataFILE is BeamIO instance.

A.4.1.5 Utilities
Table 27 presents the utilities provided in the BeamLineElement class.

39

Table 24: Definition of attributes of instances of the BeamLineElement class. The attributes marked ∗

above the dividing line are required in the call to instantiate the element. The attributes marked † below the
dividing line are calculated.

Attribute Type Unit Comment
Name∗ String Name of beam-line element.
rStrt∗ numpy.ndarray m [x, y, z] position of entrance to element in laboratory coordinate

system.
vStrt∗ numpy.ndarray rad [[i], [θ, ϕ]] (polar and azimuthal angles) of RPLC y and z axes

(i = 0, 1 respectively) at start.
drStrt∗ numpy.ndarray m “Error”, [x, y, z], displacement of start from nominal position

(not yet implemented).
dvStrt∗ numpy.ndarray rad “Error”, [[i], [θ, ϕ]], deviation in θ and ϕ from nominal axis (not

yet implemented).
Strt2End† numpy.ndarray 1 × 3 translation from start of element to end; in laboratory

coordinates. Set in derived class.
Rot2LbStrt† numpy.ndarray 3 × 3 rotation matrix that takes RPLC axes to laboratory axes

at start.
Rot2LbEnd† numpy.ndarray 3 × 3 rotation matrix that takes RPLC axes to laboratory axes

at end. Set in derived class.
TnrsMtrx† numpy.ndarray 3× 3 transfer matrix. Set in derived class.

40

Ta
bl

e
25

:
D

efi
ni

tio
n

of
ac

ce
ss

m
et

ho
ds

fo
rt

he
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

cl
as

s.

Se
tm

et
ho

d
G

et
m

et
ho

d
C

om
m

en
t

s
e
t
N
a
m
e
(
N
a
m
e
)

g
e
t
N
a
m
e
(
)

Se
t/g

et
na

m
e

of
be

am
-l

in
e

el
em

en
t.

s
e
t
r
S
t
r
t
(
r
S
t
r
t
)

g
e
t
r
S
t
r
t
(
)

Se
t/g

et
la

bo
ra

to
ry

[x
,y
,z
]

po
si

tio
n

of
en

tr
an

ce
.

s
e
t
v
S
t
r
t
(
v
S
t
r
t
)

g
e
t
v
S
t
r
t
(
)

Se
t/g

et
R

PL
C
[θ
,ϕ

]
of

pr
in

ci
pa

la
xi

s
at

st
ar

to
fe

le
m

en
t.

g
e
t
v
E
n
d
(
)

Se
t/g

et
R

PL
C
[θ
,ϕ

]
of

pr
in

ci
pa

la
xi

s
at

en
d

of
el

em
en

t.
s
e
t
d
r
S
t
r
t
(
d
r
S
t
r
t
)

g
e
t
d
r
S
t
r
t
(
)

Se
t/g

et
“e

rr
or

”
di

sp
la

ce
m

en
t.

s
e
t
d
v
S
t
r
t
(
d
v
S
t
r
t
)

g
e
t
d
v
S
t
r
t
(
)

Se
t/g

et
“e

rr
or

”
de

vi
at

io
n

in
[θ
,ϕ

].
s
e
t
L
e
n
g
t
h
(
l
e
n
g
t
h
)

g
e
t
L
e
n
g
t
h

Se
t/g

et
in

cr
em

en
t

in
s

ac
ro

ss
el

em
en

t,
(l

en
gt

h
fo

r
el

em
en

ts
th

at
do

no
tb

en
d

be
am

).
s
e
t
R
o
t
2
L
b
S
t
r
t
(
)

g
e
t
R
o
t
2
L
b
S
t
r
t
(
)

Se
t/g

et
ro

ta
tio

n
m

at
ri

x
fr

om
R

PL
C

ax
es

to
la

bo
ra

to
ry

.
s
e
t
R
o
t
2
L
a
b
S
t
r
t
(
)

g
e
t
R
o
t
2
L
b
S
t
r
t
(
)

Se
tg

et
ro

ta
tio

n
m

at
ri

x
fr

om
R

PL
C

to
la

bo
ra

to
ry

at
st

ar
t.

s
e
t
S
t
r
t
2
E
n
d
(
t
)

g
e
t
S
t
r
t
2
E
n
d
(
)

Se
t/g

et
di

sp
la

ce
m

en
tv

ec
to

rs
ta

rt
to

en
d

in
la

bo
ra

to
ry

co
or

di
na

te
s.

se
tS

tr
t2

E
nd

ta
ke

s
1

ar
gu

m
en

t,
t

,a
1D

np
.n

da
rr

ay
co

nt
ai

ni
ng

th
e

tr
an

sl
at

io
n

fr
om

th
e

st
ar

tt
o

th
e

en
d

of
th

e
el

em
en

ti
n

R
PL

C
.

s
e
t
R
o
t
2
L
b
E
n
d
(
R
)

g
e
t
R
o
t
2
L
b
E
n
d
(
)

Se
t/g

et
ro

ta
tio

n
m

at
ri

x
fr

om
R

PL
C

to
la

bo
ra

to
ry

at
en

d.
se

tR
ot

2L
bE

nd
ta

ke
s

1
ar

gu
m

en
t,
R

,a
2D

np
.a

rr
ay

co
nt

ai
ni

ng
th

e
ro

ta
tio

n
m

at
ri

x
to

be
se

t.
g
e
t
T
r
a
n
s
f
e
r
M
a
t
r
i
x
(
)

G
et

tr
an

sf
er

m
at

ri
x

se
ti

n
de

riv
ed

cl
as

s.
g
e
t
L
i
n
e
s
(
)

G
et

lin
es

to
w

ri
te

L
aT

eX
sp

ec
ifi

ca
tio

n
of

el
em

en
t.

41

Table
26:

Processing
m

ethods
provided

by
the

B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

class.

M
ethod

A
rgum

ent(s)
R

eturn
C

om
m

ent
O
u
t
s
i
d
e
B
e
a
m
P
i
p
e
(
R
)

Float
B

oolean
R

eturns
False

if
particle

is
inside

beam
pipe.

If
R,radialdistance

from
z

axis
in

R
PL

C
,falls

outside
beam

pipe,returns
True.

E
x
p
a
n
s
i
o
n
P
a
r
a
m
e
t
e
r
F
a
i
l
(
R
)

Float
B

oolean
C

alculates
an

approxim
ate

expansion
param

eter
and

returns
False

if
the

pa-
ram

eteris
large

(>
1).N

otyetused
in
T
r
a
n
s
p
o
r
t.

T
r
a
n
s
p
o
r
t
(
V
)

6×
1

np.ndarray
6×

1
np.ndarray

Transport6D
trace-space

vector,
V,across

elem
ent.

Finaltrace-space
vector

returned.
S
h
i
t
2
L
o
c
a
l
(
V
)

6×
1

np.ndarray
6×

1
np.ndarray

Transform
6D

trace-space
vector,

V,
from

R
PL

C
to

laboratory
coordinates.

Phase-space
vectorin

laboratory
fram

e
returned.

S
h
i
t
2
L
a
b
o
r
a
t
o
r
y
(
U
)

6×
1

np.ndarray
6×

1
np.ndarray

Transform
6D

phase-space
vector,

U,
from

laboratory
coordinates

to
trace-

space
coordinates

in
the

R
PL

C
fram

e.
Trace-space

vector
in

R
L

PC
fram

e
returned.

42

Ta
bl

e
27

:
U

til
iti

es
pr

ov
id

ed
by

th
e
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

cl
as

s.

M
et

ho
d

A
rg

um
en

t(
s)

R
et

ur
n

C
om

m
en

t
c
l
e
a
n
i
n
s
t
a
n
c
e
s
(
)

D
el

et
e

(u
si

ng
“d

el
”)

al
l

in
st

an
ce

s
of

th
e
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

cl
as

s.
R

es
et
i
n
s
t
a
n
c
e
s

lis
t.

r
e
m
o
v
e
I
n
s
t
a
n
c
e
(
i
n
s
t
)

In
st

an
ce

of
B

L
E

R
em

ov
e

in
st

an
ce

i
n
s
t

an
d

re
m

ov
e

fr
om

lis
t

of
in

st
an

ce
s

of
B
e
a
m
L
i
n
e
E
l
e
m
e
n
t

.
v
i
s
u
a
l
i
s
e
(
a
x
s
,
C
o
o
r
d
S
y
s
,
P
r
o
j
)

a
x
s

–
M

at
Pl

ot
L

ib
“a

xe
s”

in
st

an
ce

M
an

ag
es

pl
ot

tin
g

(v
is

ua
lis

at
io

n)
of

el
em

en
t.

C
o
o
r
d
S
y
s

–
st

ri
ng

“L
ab

”
or

“R
PL

C
”,

co
or

di
na

te
sy

st
em

in
w

hi
ch

to
vi

su
al

is
e

el
e-

m
en

t.
P
r
o
j

–
st

ri
ng

“x
z

”
or

“y
z

”
pr

oj
ec

tio
n

to
vi

su
al

is
e.

43

A.4.2 Derived class: Facility(BeamLineElement)

A.4.2.1 Instantiation
The call to instantiate the Facility derived class is:

Facility(Name, rStrt, vStrt, drStrt, dvStrt, p0, VCMV)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement. The Facility arguments are translated into instance
attributes as described in section A.4.2.2 and defined in table 29.

The lines that specify the Facility in the beam-line specification file are presented in table 28.

Table 28: Entries in the beam-line specification file that define the Facility object. Stage and Section
may be speficied for convenience. These fields are used in creating the unique string that refers to the instance
of the derived class.

Stage Section Element Type Parameter Value Unit Comment

0 Facility Global Name Name LhARA
Value = <name of facility> (str); set for

convenience

0 Facility Global Reference particle Kinetic energy 15 MeV
Value = <reference particle kinetic

energy> (float); unit MeV

0 Facility Global Vacuum chamber Mother volume radius 0.035 m

Value = <radius of "tunnel"; mother

volume around beam pipe> (float);

unit m

A.4.2.2 Instance attributes and access methods
The instance attributes are defined in table 29. The attributes are accessed and set using the methods defined

in table 30.

Table 29: Definition of attributes of instances of the Facility(BeamLineElement) derived class. All
attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
p0 float MeV Kinetic energy of reference particle.
VCMV float m Radius of vacuum-chamber mother volume. The radius defines

edge of the volume at which a particle trajectory is terminated. It
may be necessary to introduce a beam pipe later.

Table 30: Definition of access methods for the Facility derived class.

Set method Get method Comment
setp0(Name) getp0() Set/get momentum of reference particle (in

MeV).
setVCMV(VCMV) getrVCMV() Set/get radius of vacuum chamber mother

volume.

44

A.4.2.3 Processing methods
The Facility derived class has no processing methods other than those inheritted from the parent class.

A.4.2.4 I/o methods
The Facility derived class has no i/o methods other than those inheritted from the parent class.

A.4.2.5 Utilities
The Facility derived class has no utilities other than those inheritted from the parent class.

A.4.3 Derived class: Drift(BeamLineElement)

A.4.3.1 Instantiation
The call to instantiate the Drift derived class is:

Drift(Name, rStrt, vStrt, drStrt, dvStrt, Length)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement.

The lines that specify the Drift in the beam-line specification file are presented in table 31.

Table 31: Entries in the beam-line specification file that define the object. Stage and Section may be
speficied for convenience. These fields are used in creating the unique string that refers to the instance of the
derived class.

Stage Section Element Type Parameter Value Unit Comment

1 Interface Drift Length 0.05 m Length of drift

A.4.3.2 Instance attributes and access methods
The instance attributes are defined in table 32. The attributes are accessed and set using the methods defined

in table 33.

Table 32: Definition of attributes of instances of the Drift(BeamLineElement) derived class. All
attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
Length float m Length of drift.

Table 33: Definition of access methods for the Facility derived class.

Set method Get method Comment
setLength(Length) getLength() Set/get length of drift (in m).
setTransferMatrix() Set transfer matrix.

45

A.4.3.3 Processing methods
The Drift derived class has no processing methods other than those inheritted from the parent class.

A.4.3.4 I/o methods
The Drift derived class has no i/o methods other than those inheritted from the parent class.

A.4.3.5 Utilities
The Drift derived class has no utilities other than those inheritted from the parent class.

A.4.4 Derived class: Aperture(BeamLineElement)

A.4.4.1 Instantiation
The call to instantiate the Aperture derived class is:

Aperture(Name, rStrt, vStrt, drStrt, dvStrt, ParamList)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement.

The lines that specify the Aperture object in the beam-line specification file are presented in table 34.

Table 34: Entries in the beam-line specification file that define the object. Stage and Section may be
speficied for convenience. These fields are used in creating the unique string that refers to the instance of the
derived class. The three different types of aperture provided by the derived class are instanciated using the
entries separarated by solid lines.

Stage Section Element Type Parameter Value Unit Comment

1 String Aperture Circular Radius 0.002 m Inner bore of entry to nozzle
1 String Aperture Elliptical RadiusX 0.003 m Half aperture in x of elliptical colimator
1 String Aperture Elliptical RadiusY 0.002 m Half aperture in y of ellipseof elliptical colimator
1 String Aperture Rectangular RadiusX 0.05 m Half aperture in x of rectangular colimator
1 String Aperture Rectangular RadiusY 0.001 m Half aperture in y of ellipseof rectangular colimator

A.4.4.2 Instance attributes and access methods
The instance attributes are defined in table 35. The attributes are accessed and set using the methods defined

in table 37.

A.4.4.3 Processing methods
The Aperture processing method is defined in table 37.

46

Table 35: Definition of attributes of instances of the Aperture(BeamLineElement) derived class. All
attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
ParamList [] List containing aperture parameters. The first parameter is an

int and defines the aperture “Type”. The remaining elements
in the parameter list are floats with meanings that depend on
Type.

ParamList[0] int Type= 0; circular
ParamList[1] float m Radius of circular aperture
ParamList[0] int Type= 1; Elliptical
ParamList[1] float m Radius of elliptical aperture along xRPLC axis
ParamList[2] float m Radius of elliptical aperture along yRPLC axis
ParamList[0] int Type= 2; Rectangular
ParamList[1] float m Size of aperture along xRPLC axis
ParamList[2] float m Size of aperture along yRPLC axis

Table 36: Definition of access methods for the Aperture derived class.

Set method Get method Comment
setApertureParameters(ParamList) Set aperture parameters. Sets Type and pa-

rameters depending on Type.
getType() Get Type of aperture.
getParams() Get aperture parameters.

Table 37: Utilities provided by the Aperture derived class.

Method Argument(s) Return Comment
Transport(V) np.ndarray np.ndarray or None Transport trace-space vector V. If V falls out-

side of the aperture, return None.

47

A.4.4.4 I/o methods
The Aperture derived class has no i/o methods other than those inheritted from the parent class.

A.4.4.5 Utilities
The Aperture derived class has no utilities other than those inheritted from the parent class.

A.4.5 Derived class: FocusQuadrupole(BeamLineElement)

A.4.5.1 Instantiation
The call to instantiate the FocusQuadrupole derived class is:

FocusQuadrupole(Name, rStrt, vStrt, drStrt, dvStrt, Length, Strength,

kFQ)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement. The quadrupole Length is required together with
either the field gradient, Strength (equation 28), or the quadrupole k parameter, kFQ (equation 30).

The lines that specify the FocusQuadrupole object in the beam-line specification file are presented in
table 38.

Table 38: Entries in the beam-line specification file that define the object. Stage and Section may be
speficied for convenience. These fields are used in creating the unique string that refers to the instance of the
derived class. The entries that define focus quadrupole are shaded light grey while the lines that define the
defocus quadrupole are shaded in a darker shade of grey.

Stage Section Element Type Parameter Value Unit Comment

1 String Fquad Length 0.04 m Length of focusing quad

1 String Fquad Strength 332 T/m Strength of focusing quad

1 String Dquad Length 0.02 m Length of defocusing quad

1 String Dquad Strength 318.5 T/m Strength of defocusing quad

A.4.5.2 Instance attributes and access methods
The instance attributes are defined in table 39. The attributes are accessed and set using the methods defined

in table 41.

Table 39: Definition of attributes of instances of the FocusQuadrupole(BeamLineElement) derived
class. All attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
FQmode int If 0, use particle momentum in calculation of transfer matrix; if

1, use reference particle momentum.
Length float m Effective length of quadrupole.
Strength float T/m Magnetic field gradient; required if kFQ is not given.
kFQ float m−2 Quadrupole k parameter.

48

Table 40: Definition of access methods for the FocusQuadrupole derived class.

Set method Get method Comment
setFQmode(FQmode) getFQmode() Set/get FQmode.
setLength(Length) getLength() Set/get length.

setStrength(Length) getStrength() Set/get strength (field gradient).
setKFQ(Length) getKFQ() Set/get kFQ, quadrupole k parameter.

A.4.5.3 Processing methods
The FocusQuadrupole processing methods are defined in table 41.

Table 41: Utilities provided by the FocusQuadrupole derived class.

Method Argument(s) Return Comment
calckFQ() float Calculates kFQ if strength is given in instance

attributes.
calcStrength() float Calculates Strength if kFQ is is given in

instance attributes.

A.4.5.4 I/o methods
The Focusquadrupole derived class has no i/o methods other than those inheritted from the parent class.

A.4.5.5 Utilities
The Focusquadrupole derived class has no utilities other than those inheritted from the parent class.

A.4.6 Derived class: DefocusQuadrupole(BeamLineElement)

A.4.6.1 Instantiation
The call to instantiate the DefocusQuadrupole derived class is:

DefocusQuadrupole(Name, rStrt, vStrt, drStrt, dvStrt, Length, Strength,

kDQ)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement. The quadrupole Length is required together with
either the field gradient, Strength (equation 28), or the quadrupole k parameter, kDQ (equation 30).

The lines that specify the FocusQuadrupole object in the beam-line specification file are presented in
table 38.

A.4.6.2 Instance attributes and access methods
The instance attributes are defined in table 42. The attributes are accessed and set using the methods defined

in table 44.

A.4.6.3 Processing methods
The DefocusQuadrupole processing methods are defined in table 44.

49

Table 42: Definition of attributes of instances of the DefocusQuadrupole(BeamLineElement) de-
rived class. All attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
DQmode int If 0, use particle momentum in calculation of transfer matrix; if

1, use reference particle momentum.
Length float m Effective length of quadrupole.
Strength float T/m Magnetic field gradient; required if kDQ is not given.
kDQ float m−2 Quadrupole k parameter.

Table 43: Definition of access methods for the DefocusQuadrupole derived class.

Set method Get method Comment
setDQmode(DQmode) getDQmode() Set/get DQmode.
setLength(Length) getLength() Set/get length.

setStrength(Length) getStrength() Set/get strength (field gradient).
setKDQ(Length) getKDQ() Set/get kDQ, quadrupole k parameter.

A.4.6.4 I/o methods
The Defocusquadrupole derived class has no i/o methods other than those inheritted from the parent class.

A.4.6.5 Utilities
The Defocusquadrupole derived class has no utilities other than those inheritted from the parent class.

50

Table 44: Utilities provided by the DefocusQuadrupole derived class.

Method Argument(s) Return Comment
calckDQ() float Calculates kDQ if strength is specified.
calcStrength() float Calculates Strength if kDQ is specified.

A.4.7 Derived class: SectorDipole(BeamLineElement)

A.4.7.1 Instantiation
The call to instantiate the SectorDipole derived class is:

SectorDipole(Name, rStrt, vStrt, drStrt, dvStrt, Angle, B)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement.

The lines that specify the SectorDipole object in the beam-line specification file are presented in table 45.

Table 45: Entries in the beam-line specification file that define the sector dipole object. Stage and Section
may be speficied for convenience. These fields are used in creating the unique string that refers to the instance
of the derived class.

Stage Section Element Type Parameter Value Unit Comment

1 String Dipole Sector (Length, angle) Length 0.8 m

1 String Dipole Sector (Length, angle) Angle 45 degrees

The orientation of the RLPC coordinate axes with respect to those of the laboratory frame changes from the
start of sector dipole to its end. Referring to figure 2, the vector, vES, that translates the origin of the RLPC
coordinate system at the start of the sector dipole to the origin of the RLPC coordinate system at its end is given
by:

vES = 2ρ0 sin

(
ϕ

2

)
sin
(
ϕ
2

)
0

cos
(
ϕ
2

)
 ; (69)

where ρ0 is the radius of the circular locus of the trajectory of the reference particle. If the rotation matrix
taking the RPLC axes at the start of the sector dipole to the laboratory coordinate axes is R

S
, then the vector,

vlab
ES , that translates from the start of the sector dipole to its end in laboratory coordinates is given by:

vlab
ES = R

S
vES . (70)

The rotation matrix that transforms from the RPLC system at the end of the sector dipole to the laboratory
coordinate system, R

E
is given by:

R
E
= R

S
R ; (71)

where:

R =

cosϕ 0 − sinϕ

0 1 0

sinϕ 0 cosϕ

 . (72)

51

A.4.7.2 Instance attributes and access methods
The instance attributes are defined in table 46. The attributes are accessed and set using the methods defined

in table 47.

Table 46: Definition of attributes of instances of the SectorDipole(BeamLineElement) derived class.
All attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
Angle float rad Angle through which sector dipole bends positive reference par-

ticle.
B float T Magnetic field.

Table 47: Definition of access methods for the SectorDipole derived class.

Set method Get method Comment
setAngle(Angle) getAngle() Set/get bending angle.

setB(B) getB() Set/get dipole magnetic field.
setLength() getLength() Set/get length of reference particle trajectory

through sector dipole (arc length).

A.4.7.3 Processing methods
The SectorDipole derived class has no processing methods other than those inheritted from the parent
class.

A.4.7.4 I/o methods
The SectorDipole derived class has no i/o methods other than those inheritted from the parent class.

A.4.7.5 Utilities
The SectorDipole derived class has no utilities other than those inheritted from the parent class.

A.4.8 Derived class: Solenoid(BeamLineElement)

A.4.8.1 Instantiation
The call to instantiate the Solenoid derived class is:

Solenoid(Name, rStrt, vStrt, drStrt, dvStrt, Length, Strength, kSol)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement. The solenoid Length is required together with either
the magnetic field strength, Strength or the solenoid k parameter, kSol (equation 33).

The lines that specify the Solenoid object in the beam-line specification file are presented in table 52.

A.4.8.2 Instance attributes and access methods
The instance attributes are defined in table 49. The attributes are accessed and set using the methods defined

in table 51.

52

Table 48: Entries in the beam-line specification file that define the solenoid object. Stage and Section

may be speficied for convenience. These fields are used in creating the unique string that refers to the instance
of the derived class.

Stage Section Element Type Parameter Value Unit Comment

1 Matching Solenoid Length, strength Length 0.857 m
1 Matching Solenoid Length, strength Strength 1.788858966 rad/m

Table 49: Definition of attributes of instances of the Solenoid(BeamLineElement) derived class. All
attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
Length float m Effective length of solenoid.
Strength float T/m Magnetic field gradient; required if kSol is not given.
kSol float m−2 GaborLens k parameter required if Strength not given.

A.4.8.3 Processing methods
The Solenoid processing method is defined in table 51.

A.4.8.4 I/o methods
The Solenoid derived class has no i/o methods other than those inheritted from the parent class.

A.4.8.5 Utilities
The Solenoid derived class has no utilities other than those inheritted from the parent class.

A.4.9 Derived class: GaborLens(BeamLineElement)

A.4.9.1 Instantiation
The call to instantiate the GaborLens derived class is:

GaborLens(Name, rStrt, vStrt, drStrt, dvStrt, Bz, VA, RA, Rp, Length,

kSol)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement. The Gabor lens Length is required together with
either the parameters Bz, VA, RA, and Rp corresponding, respectively, to the parameters Bz , VA, VA and Rp

defined in section 4.4, or kSol, the solenoid strength parameter of the equaivalent solenoid (see section 4.4).
The effective electon number density inside the trap is calculated using either Bz, VA, RA and Rp or kSol.

The lines that specify the GaborLens object in the beam-line specification file are presented in table 52.

A.4.9.2 Instance attributes and access methods
The instance attributes are defined in table 53. The attributes are accessed and set using the methods defined

in table 54.

A.4.9.3 Processing methods
The GaborLens processing method is defined in table 51.

53

Table 50: Definition of access methods for the Solenoid derived class.

Set method Get method Comment
setLength(Length) getLength() Set/get length.
setStrength(B) getStrength() Set/get strength (solenoid magnetic field).
setKSol(Length) getKFQ() Set/get kSol, solenoid k parameter.

Table 51: Utilities provided by the Solenoid derived class.

Method Argument(s) Return Comment
calckSol() float Calculates kSol if strength is specified.
calcStrength() float Calculates Strength if kSol is specified.

A.4.9.4 I/o methods
The GaborLens derived class has no i/o methods other than those inheritted from the parent class.

A.4.9.5 Utilities
The GaborLens derived class has no utilities other than those inheritted from the parent class.

54

Table 52: Entries in the beam-line specification file that define the Gabor lens object. Stage and Section
may be speficied for convenience. These fields are used in creating the unique string that refers to the instance
of the derived class.

Stage Section Element Type Parameter Value Unit Comment

1 String Gabor lens Length, strength Length 0.857 m

1 String Gabor lens Length, strength Strength 1.604339941 rad/m

Table 53: Definition of attributes of instances of the GaborLens(BeamLineElement) derived class. All
attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
Bz float T Effective length of Gabor lens.
VA float V Effective length of Gabor lens.
RA float m Effective length of Gabor lens.
RP float m Effective length of Gabor lens.
Length float m Effective length of Gabor lens.
Strength float T/m Magnetic field gradient; required if kSol is not given.
kSol float m−2 k parameter of the solenoid with the equivalent focusing strength.

Table 54: Definition of access methods for the GaborLens derived class.

Set method Get method Comment
setBz(Bz) getBz() Set/get magnetic field of the Penning-

Malmberg trap.
setVA(VA) getVA() Set/get anode voltage of the Penning-

Malmberg trap.
setRA(RA) getRA() Set/get radius of the anode of the Penning-

Malmberg trap.
setRP(RP) getRP() Set/get magnetic effective radiius of the

plasma confined within the Penning-
Malmberg trap.

setLength(Length) getLength() Set/get effective length of the lens.
setStrength(Strength) getStrength() Set/get k-parameter of the solenoid with the

equivalent focal length.
setElectronDenisty() getElectronDenisty() Set/get electron density.

55

A.4.10 Derived class: CylindricalRFCavity(BeamLineElement)

A.4.10.1 Instantiation
The call to instantiate the CylindricalRFCavity derived class is:

CylindricalRFCavity(Name, rStrt, vStrt, drStrt, dvStrt, Gradient,

Frequency, Phase)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement.

The lines that specify the CylindricalCavity object in the beam-line specification file are presented in
table 55.

Table 55: Entries in the beam-line specification file that define the cylindrical-cavity object. Stage and
Section may be speficied for convenience. These fields are used in creating the unique string that refers to
the instance of the derived class.

Stage Section Element Type Parameter Value Unit Comment

1 String Cavity Cylindrical Gradient 5 MV/m Gradient
1 String Cavity Cylindrical Frequency 200 MHz Frequency
1 String Cavity Cylindrical Phase 0 degrees Phase of reference particle

A.4.10.2 Instance attributes and access methods
The instance attributes are defined in table 56. The attributes are accessed and set using the methods defined

in table 57.

Table 56: Definition of attributes of instances of the CylindricalRFCavity(BeamLineElement)
derived class. All attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
Gradient float MV/m Peak electric field gradient on axis.
Frequency float MHz Resonant frequency.
Phase float rad Phase cavity at time reference particle crosses centre of cavity,

“linac convention”.
TransitTimeFactor float Transit time factor (equation 46).
V0 float MV Peak voltage.
alpha float αRF parameter defined in equation 53.
wperp float ω⊥ parameter defined in equation 52.
cperp float c⊥ parameter defined in equation 50.
sperp float s⊥ parameter defined in equation 51.
wprll float ω|| parameter defined in equation 56.
cprll float c|| parameter defined in equation 54.
sprll float s|| parameter defined in equation 55.

56

Table 57: Definition of access methods for the CylindricalRFCavity derived class.

Set method Get method Comment
setGradient(Gradient) getGradient() Set/get peak electric field gradi-

ent.
setFrequency(Frequency) getFrequency() Set/get frequency.

setAngularFrequency(AngFreq) getAngularFrequency() Set/get angular frequency.
setPhase(Phase) getPhase() Set/get phase.

setWaveNumber(WaveNumber) getWaveNumber() Set/get wavenumber.
setLength(Length) getLength() Set/get Length.
setRadius(Radius) getRadius() Set/get Radius.

setTransitTimeFactor getTransitTimeFactor() Set/get TransitTimeFactor.
(TransitTimeFactor)

setV0(V0) getV0() Set/get peak voltage.
setalpha(alpha) getalpha() Set/get alpha.
setwperp(wperp) getwperp() Set/get wperp.
setcperp(cperp) getcperp() Set/get cperp.
setsperp(sperp) getsperp() Set/get sperp.
setwprll(wprll) getwprll() Set/get wprll.
setcprll(cprll) getcprll() Set/get cprll.
setsprll(sprll) getsprll() Set/get sprll.

setmrf(mrf) getmrf() Set/get mrf.

A.4.10.3 Processing methods
The CylindricalRFCavity derived class has no processing methods other than those inheritted from the
parent class.

A.4.10.4 I/o methods
The CylindricalRFCavity derived class has no i/o methods other than those inheritted from the parent
class.

A.4.10.5 Utilities
The CylindricalRFCavity derived class has no utilities other than those inheritted from the parent class.

A.4.10.6 Processing methods
The CylindricalRFCavity dericed class has no processing methods.

A.4.11 Derived class: Source(BeamLineElement)

A.4.11.1 Instantiation
The call to instantiate the Source derived class is:

Source(Name, rStrt, vStrt, drStrt, dvStrt, Mode, Parameters)

Parent class arguments Name, rStrt, vStrt, drStrt, and dvStrt are described in section A.4.1.2. These
arguments are passed directly to BeamLineElement. Mode is an integer that transmits the type of source to

57

be generated. The specification of the Parameters list depends on the value of Mode. The content of the
Parameters list is transferred directly to the Param instance attribute.

The lines that specify the Source object in the beam-line specification file are presented in table 58.

Table 58: Entries in the beam-line specification file that define the source object. Stage and Section may
be speficied for convenience. These fields are used in creating the unique string that refers to the instance of the
derived class. The groups of lines that define the source of each of the four Modes are indicated by the shading.

Stage Section Element Type Parameter Value Unit Comment

1 Source Source Parameterised TNSA SourceMode 0 Mode
1 Source Source Parameterised TNSA SigmaX 4.00E-06 m Gaussian width, x
1 Source Source Parameterised TNSA SigmaY 4.00E-06 m Gaussian width, y
1 Source Source Parameterised TNSA Emin 1 MeV Minimum of energy distribution
1 Source Source Parameterised TNSA Emax 25 MeV Maximum of energy distribution
1 Source Source Parameterised TNSA nPnts 1000 Number of points to sample for integration of PDF
1 Source Source Parameterised TNSA MinCTheta 0.998 Maximum theta for flat cos theta
1 Source Source Parameterised TNSA Power 2.5E+15 W Laser power
1 Source Source Parameterised TNSA Energy 70 J Laser energy
1 Source Source Parameterised TNSA Wavelength 0.8 um Laser wavelength
1 Source Source Parameterised TNSA Duration 2.80E-14 s Laser pulse duration
1 Source Source Parameterised TNSA Thickness 4.00E-07 m Target thickness
1 Source Source Parameterised TNSA Intensity 4.00E+20 W/cm2 Laser intensity
1 Source Source Parameterised TNSA DivAngle 25 degrees Electron divergence angle
1 Source Source Parameterised TNSA SourceMode 1 Gaussian kinetic energy
1 Source Source Parameterised TNSA SigmaX 4.00E-06 m Gaussian width, x
1 Source Source Parameterised TNSA SigmaY 4.00E-06 m Gaussian width, y
1 Source Source Parameterised TNSA MeanEnergy 15 MeV Mean of guassian kinetic energy
1 Source Source Parameterised TNSA SigmaEnergy 0.3 MeV Sigma of guassian kinetic energy
1 Source Source Parameterised TNSA MinCTheta 0.998 Minimum theta for flat cos theta
1 Source Source Flat SourceMode 2 Gaussian kinetic energy
1 Source Source Flat SigmaX 4.00E-06 m Gaussian width, x
1 Source Source Flat SigmaY 4.00E-06 m Gaussian width, y
1 Source Source Flat Emin 1 MeV Minimum of energy distribution
1 Source Source Flat Emax 25 MeV Maximum of energy distribution
1 Source Source Flat MinCTheta 0.998 Maximum theta for flat cos theta
1 Source Source ReadFromFile SourceMode 3 Read particles from file

A.4.11.2 Instance attributes and access methods
The instance attributes are defined in tables 59, 60, and 61, each table refers to a particular source Mode. The

attributes are accessed and set using the methods defined in table 63.

A.4.11.3 Processing methods
The Source derived class has no processing methods other than those inheritted from the parent class.

A.4.11.4 I/o methods
The Source derived class has no i/o methods other than those inheritted from the parent class.

A.4.11.5 Processing methods
The processing methods provided by the Source derived class are listed in table 64.

58

Table 59: Definition of attributes of instances of the Source(BeamLineElement) derived class for source
Mode= 0, the parameterised TNSA model. All attributes are required in the call to instantiate the element.

Attribute Type Unit Comment
Mode integer Mode= 0; parameterised laser-driven source.
Param[0] float m Standard deviation of normal distribution from which x coordi-

nate is sampled.
Param[1] float m Standard deviation of normal distribution from which y coordi-

nate is sampled.
Param[2] float Minimum cos θS . The specification of a minimum for cos θS im-

proves the efficiency of generation as it may be used to restrice
generation to the set of partices that will enter the downstream
acceptane.

Param[3] float MeV Minimum kinetic energy (Kmin.
Param[4] float MeV Maximum kinetic energy (Kmax. Value entered here is overwrit-

ten when calculated in getLaserDrivenParticleEnergy
during initialisation.

Param[5] integer nPnts: Number of points to sample for integration of PDF (kept
for backward compatibility).

Param[6] float W PL: Laser power.
Param[7] float J EL: Laser energy.
Param[8] float µm λ: Laser wavelength.
Param[9] float s tlaser: Laser pulse duration.
Param[10] float m d: Diameter of laser spot at focus.
Param[11] float W/cm2 I: Laser intensity
Param[12] float ◦ θdegrees: Electron divergence angle.
Param[13] float ◦ Intercept of α, maximum half opening angle at K = 0.
Param[14] float ◦ Scaled slope of α(K).

A.4.11.6 Utilities
The utilities provided by the Source derived class are listed in table 65.

A.5 UserFramework

UserFramework is a module that provides a set of methods used in the code provided to allow users easy
access to the code and data. The following methods are provided:

startAnalysis(argv): processes input flags passed in call to run script.
Argument:
argv: list of arguments passed to main by call to run script.

Returns:
Success: (boolean) True if processing successful.
Debug: (boolean) Set to True if flag -d is set to True.
inputfile: (path) full path to input file; set using flag -y.
outputfile: (path) full path to output file; set using flag -o.

59

Table 60: Definition of attributes of instances of the Source(BeamLineElement) derived class for source
Mode= 1 in which energy is sampled from a normal distribution. All attributes are required in the call to
instantiate the element.

Attribute Type Unit Comment
Mode integer Mode= 1; parameterised laser-driven source.
Param[0] float m Standard deviation of normal distribution from which x coordi-

nate is sampled.
Param[1] float m Standard deviation of normal distribution from which y coordi-

nate is sampled.
Param[2] float Minimum cos θS . The specification of a minimum for cos θS im-

proves the efficiency of generation as it may be used to restrice
generation to the set of partices that will enter the downstream
acceptane.

Param[3] float MeV Mean kinetic energy.
Param[4] float MeV Standard deviation of kinetic energy distribution.

nEvts: (integer) number of events to process; set using flag -n.

bdsimfile: (path) full path to bdsim format file; set using flag -z.

beamspecfile: (path) full path to beam specification CSV file; set using flag -b.

handleFILES(beamspecfile, inputfile, outputfile, bdsimFILE=False): File han-
dling method to check files exist and create relevant BeamIO instances.
Arguments:

beamspecfile: (path) full path to beam specification CSV file;

inputfile: (path) full path to input file;

outputfile: (path) full path to output file;

bdsimfile: (path) full path to bdsim format file.

Returns:

Success: (boolean) True if file handling successful.

ibmIOr: (BeamIO) instance of BeamIO class for file to be read.

ibmIOw: (BeamIO) instance of BeamIO class for file to be written.

EventLoop(iUsrAnl, ibmIOr, ibmIOw, nEvtsIn): executes loop over nEvtsIn events. Reads
event record or generates event if ibmIOr=None, and handles end-of-file. Passes control to UserAnal.EventLoop.
Arguments:

iUsrAnl: (UserAnal) instance.

ibmIOr: (BeamIO) instance of BeamIO class for file to be read.

ibmIOw: (BeamIO) instance of BeamIO class for file to be written.

nEvtsIn: (integer) number of events to process.

Returns:

Success: (boolean) True if successful.

60

Table 61: Definition of attributes of instances of the Source(BeamLineElement) derived class for source
Mode= 2 in which energy is sampled from a uniform distribution. All attributes are required in the call to
instantiate the element.

Attribute Type Unit Comment
Mode integer Mode= 2; parameterised laser-driven source.
Param[0] float m Standard deviation of normal distribution from which x coordi-

nate is sampled.
Param[1] float m Standard deviation of normal distribution from which y coordi-

nate is sampled.
Param[2] float Minimum cos θS . The specification of a minimum for cos θS im-

proves the efficiency of generation as it may be used to restrice
generation to the set of partices that will enter the downstream
acceptane.

Param[3] float MeV Mean kinetic energy.
Param[4] float MeV Maximum kinetic energy.

Table 62: Definition of attributes of instances of the Source(BeamLineElement) derived class for source
Mode= 3 in which parameters of particle at source are read from an input file. All attributes are required in the
call to instantiate the element.

Attribute Type Unit Comment
Mode integer Mode= 3; partice trace space read from file. In this case no

additional paramters are required.

A.6 visualise

The visualise class manages the visualisation of the beam line and particles traversing it.

A.6.1 Instantiation

The call to instantiate the visualise class is:

Beam(CoordSys, Projection)

CoordSys (string) is either “RPLC” to visualise the beam line in the reference particle local coordinate system
or “Lab”. Projection (string) is either “xs” (RPLC) or “xz” (lab) to visualise the xs or xz projecton and
eithed “ys” (RPLC) or “yz” (lab) to visualise the xs or xz projecton.

A.6.2 Instance attributes and access methods

The instance attributes are presented in table 66 and the access methods are summarised in table 67.

A.6.3 Processing methods

Table 68 presents the processing methods provided in the visualise class.

61

Table 63: Definition of access methods for the Source derived class.

Set method Get method Comment
setMode getMode() Set/get Mode.

setModeText getModeText() Set string with readable name
for mode.

setModeParamterText getParameterText() Set/get list of strings with read-
able name for paramter.

setParameters getParameters() Set/get parameters; list of
paramters as defined above.

setParameterUnit getParameterUnit() Set/get list of strings containing
parameter units.

A.6.4 I/o methods

The visualise class has no i/o methods.

A.6.5 Utilities

The visualise class has no i/o methods.

62

Ta
bl

e
64

:
D

efi
ni

tio
n

of
pr

oc
es

si
ng

m
et

ho
ds

pr
ov

id
ed

by
th

e
S
o
u
r
c
e

de
riv

ed
cl

as
s.

M
et

ho
d

A
rg

um
en

ts
R

et
ur

n
C

om
m

en
t

g
e
t
P
a
r
t
i
c
l
e
F
r
o
m
S
o
u
r
c
e
(
)

nd
ar

ra
y

G
et

tr
ac

e
sp

ac
e

fo
r

pa
rt

ic
le

at
so

ur
ce

,r
et

ur
ns

np
.a

rr
ay

.
g
e
t
P
a
r
t
i
c
l
e
(
)

flo
at

s
C

al
le

d
fr

om
g
e
t
P
a
r
t
i
c
l
e
F
r
o
m
S
o
u
r
c
e
(
)

,
re

-
tu

rn
s

pa
ra

m
et

er
s

us
ed

to
cr

ea
te

tr
ac

e
sp

ac
e

of
pa

rt
ic

le
at

so
ur

ce
.

g
e
t
F
l
a
t
T
h
e
t
a
P
h
i
(
)

flo
at

s
C

al
le

d
fr

om
g
e
t
P
a
r
t
i
c
l
e
(
)

if
fla

tc
os

θ S
,

fla
tϕ

S
di

st
ri

bu
tio

n
is

re
qu

es
te

d.
g
e
t
g
o
f
r
p
(
r
p
m
a
x
,
x
p
,
y
p
)

flo
at

s
flo

at
R

et
ur

ns
g
(r

′)
gi

ve
n

in
pu

tr
′ m
a
x
,x

′ ,
an

d
y
′ .

g
t
h
e
t
a
(
E
n
e
r
g
y
)

flo
at

R
et

ur
ns

θ S
ge

ne
ra

te
d

us
in

g
a

gu
as

si
an

di
st

ri
-

bu
tio

n.
D

ep
ri

ca
te

d.
a
n
g
l
e
g
e
m
e
r
a
t
o
r
(
E
n
e
r
g
y
)

flo
at

R
et

ur
ns

θ S
,ϕ

S
us

in
g
g
t
h
e
t
a

an
d

un
if

or
m

di
st

ri
bu

tio
n

fo
rϕ

S
.D

ep
ri

ca
te

d.
g
e
t
G
a
u
s
s
i
a
n
T
h
e
t
a
P
h
i
(
E
n
e
r
g
y
)

flo
at

R
et

ur
ns

co
s
θ S

an
d

ϕ
S

us
in

g
a
n
g
l
e
g
e
n
e
r
a
t
o
r

.
p
a
r
a
m
t
e
r
s
(
P
,
E
,
l
,
t
l
,
d
,
I
,
t
)

flo
at

s
R

et
ur

ns
de

riv
ed

pa
ra

m
et

er
s

us
ed

to
ge

ne
ra

te
T

N
SA

pr
ot

on
ki

ne
tic

en
er

gy
sp

ec
tr

um
.

e
q
u
a
t
i
o
n
(
x
,
t
l
,
t
0
)

flo
at

s
R

et
ur

ns
re

su
lt

of
ev

al
ua

tio
n

eq
ua

tio
n

??
.

g
e
t
L
a
s
e
r
D
r
i
v
e
n
P
r
o
t
o
n
E
n
e
r
g
y
(
)

G
en

er
at

es
pr

ot
on

ki
ne

tic
en

er
gy

at
so

ur
ce

fo
r

pa
ra

m
te

ri
se

d
T

N
SA

m
od

el
.

g
e
t
L
a
s
e
r
C
u
m
P
r
o
b
P
a
r
a
m
(
)

g
e
t
L
a
s
e
r
C
u
m
P
r
o
b
(
)

g
e
t
L
a
s
e
r
D
r
i
v
e
n
P
r
o
t
o
n
E
n
e
r
g
y
P
r
o
b
D
e
n
s
i
t
y
(
)

g
e
t
T
r
a
c
e
S
p
a
c
e
(
)

63

Table 65: Definition of utilities provided by the Source derived class.

Method Arguments Return Comment
CheckSourceParam(Mode, Param) Integer, list boolean Class method. Check that

mode and parameters are
valid. Calls CheckMode and
CheckParam

CheckMode(Mode) integer boolean Class method. Check is valid.
CheckParam list boolean Class method. Check paramter

list is valid.
tabulateParameters()

Table 66: Definition of attributes of instances of the visualise class.

Attribute Type Comment
CoordSys String Either “RPLC” to visualise the in the reference particle local coordinate system

or “Lab”.
Projection String Either “xs” (RPLC) or “xz” (lab) to visualise the xs or xz projecton and eithed

“ys” (RPLC) or “yz” (lab) to visualise the xs or xz projecton.

Table 67: Definition of access methods for the visualise class.

Set method Get method Comment
setCoordSys getCoordSys Set coordinate system for visualisation.
setProjection setProjection Set projection for visualisation.

Table 68: Processing methods provided by the visualise class.

Method Argument(s) Return Comment
Particles(axs, nPrtcl) plot, integer Manage ploting of nPrtcl particles on

matplotlib axes instance.
BeamLine(axs) plot Manage ploting of beam line on

matplotlib axes instance.

64

A.7 BeamIO

The BeamIO class provides interfaces to the reading and writing of beam specification and beam data files.

A.7.1 Instantiation

The call to instantiate the BeamIO class is:

BeamIO(datafilePATH, datafileNAME, create, BDSIMfile)

datafilePATH: (string) Path to directory in which input file is to be found, or, in which output file is to be
created. datafilePATH can be set to None if the full path is specified in datafileNAME.

datafileNAME: (string) File name (string) which, when appendded to datafilePATH gives the full path
to the input or output data file, or. full path to the input or output file.

create: (boolean) if true indicates that the file must be created. If a file exists at the location specified by
datafilePATH and datafileNAME it will be overwritten.

BDSIMfile: (boolean) If True then the file is to be read or written in BDSIMfile format.

A.7.2 Instance attributes and access methods

The BeamIO instance attributes are presented in table 69 and the access methods are summarised in table 70.

Table 69: Definition of attributes of instances of the BeamIO class.

Attribute Type Comment
dataFILE Path Full path to data file.
Read1stRecord Boolean True if first record has been read from file.
dataFILEversion Integer For BeamIO files version number identifying file format.
create Boolean True if data file is to be created.
BDSIMfile Boolean True id reading or writing a BDSim file.

Table 70: Definition of access methods for the BeamIO class.

Set method Get method Comment
setpathFILE getpathFILE Set/get path to directory containing data file.
setdataFILE getdataFILE Set/get full path to data file.

setReadFirstRecord getReadFirstRecord Set/get flag indicating whether the first record
has been read.

setcreate getcreate Set/get flag indicating whether data file is to be
created.

setdataFILEversion getdataFILEversion Set/get BeamIO version number.
setBDSIMfile getBDSIMfile Set/get flag indicating whether the data file is in

BDSIM format.

65

A.7.3 Processing methods

The BeamIO class has no processing methods.

A.7.4 I/o methods

Table 71 presents the i/o methods provided by the BeamIO class.

Table 71: I/o methods provided by the BeamIO class.

Method Argument(s) Return Comment
readBeamDataRecord() Boolean Manages reading/writing of a

record from/to the data file. Re-
turns a boolean, EoF, set to True
of end of file has been detected.

writeFIRSTword() Writes 9999 to indicate that
BeamIO version is > 1. Returns
integer version number.

writeVersion(version) string Writes data-file format version
to file. Version is a string, e.g.
BeamIO V3.

readVersion() Integer Reads data-file format version
number from file. Returns in-
teger version number stripped
from end of string (e.g. 3).

writeREPOversion() Writes git repo Tag label, to-
gether with date/time and text
description of last commit, to-
gether with date/time.

readREPOversion() list Reads and returns list of strings
containing git repo Tag label, to-
gether with date/time and text
description of last commit, to-
gether with date/time.

flushNclosedataFile(dataFILE) Path Flush and close data dataFILE
at end of processing.

A.7.5 Utilities

Table 72 presents the utilities provided by the BeamIO class.

A.8 Simulation

The singleton Simulation class provides a framework and utilities for the simulation of the passage of
particles through the beam lines defined through the classes described in this document. By default the seed for
the random number generator is set using the system time.

66

Table 72: Utilities provided by the BeamIO class.

Method Argument(s) Return Comment
resetinstances() Class method. Sets list of instances to [].
cleanBeamIOfiles() Class method. Delete BeamIO instances and

reset list of instances.

A.8.1 Instantiation

The call to instantiate the Simulation class is:

Simulation(NEvts, BeamLineSpecificationCVSfile, dataFileDir,

dataFileName)

NEvts: (integer) Number of events to generate.
BeamLineSpecificationCVSfile: (string) String containing path to the beam-line specification CVS

file.
dataFileDir: (string) String containing path to directory in which data file is to be written.
dataFileName: (string) Name of file to be written.

Simulation has two methods defined outside the class:
getRandom(): returns number between 0. and 1. drawn from a uniform distributin; and
getParabolic(umax): returns number between −umax and umax drawn from a parabolic distribution

with a maximum at 0.

A.8.2 Instance attributes and access methods

The Simulation instance attributes are presented in table 73 and the access methods are summarised in
table 74.

Table 73: Definition of attributes of instances of the Simulation class.

Attribute Type Comment
NEvt integer Number of events to generate.
ParamFileName string Path to beam-line parameter CSV file.
dataFileDir string Path to the directory in which data file is to be written.
dataFileName string Name of file to be created.
Facility Facility Instance of the derived Facility class derived from

BeamLineElement.
iBmIOw BeamIO Instance of the derived BeamIO class for the file to be written.
ProgressPrint boolean If True the progress towards the NEvt requested events is printed.

A.8.3 Processing methods

The Simulation class provides one processing method:

RunSim()

67

which manages the generation of NEvts events. The specification of the beam line and the individual events
are written to the output data file.

A.8.4 I/o methods

The Simulation class provides no i/o methods.

A.8.5 Utilities

The Simulation provides no utilities.

A.9 Physical constants

The PhysicalConstants class provides the physical constants that are required to carry out the linear
optics calculations. The values are taken from, for example, the Particle Data Group book. The constants
packages is implemented as a singleton class so that there is no ambiguity about which values are in use.

A.9.1 Instantiation

The call to instantiate the PhysicalConstants class is:

PhysicalConstants()

A.9.2 Instance attributes and access methods

The PhysicalConstants has no instance attributes. The access methods are summarised in table 75.

A.9.3 Processing methods

The PhysicalConstants class provides no processing methods.

A.9.4 I/o methods

The PhysicalConstants class provides no i/o methods.

A.9.5 Utilities

The PhysicalConstants provides no utilities.

68

Ta
bl

e
74

:
D

efi
ni

tio
n

of
ac

ce
ss

m
et

ho
ds

fo
rt

he
S
i
m
u
l
a
t
i
o
n

cl
as

s.

Se
tm

et
ho

d
G

et
m

et
ho

d
C

om
m

en
t

s
e
t
N
E
v
t

g
e
t
N
E
v
t

Se
t/g

et
nu

m
be

ro
fe

ve
nt

s
to

ge
ne

ra
te

.
s
e
t
B
e
a
m
L
i
n
e
S
p
e
c
i
f
i
c
a
t
i
o
n
F
i
l
e

g
e
t
B
e
a
m
L
i
n
e
S
p
e
c
i
f
i
c
a
t
i
o
n
F
i
l
e

Se
t/g

et
fu

ll
pa

th
to

be
am

lin
e

sp
ec

ifi
ca

tio
n

fil
e.

s
e
t
d
a
t
a
F
i
l
e
D
i
r

g
e
t
d
a
t
a
F
i
l
e
D
i
r

Se
t/g

et
pa

th
to

di
re

ct
or

y
in

w
hi

ch
da

ta
fil

e
is

to
be

w
ri

tte
n.

s
e
t
d
a
t
a
F
i
l
e
N
a
m
e

g
e
t
d
a
t
a
F
i
l
e
N
a
m
e

Se
t/g

et
na

m
e

of
da

ta
fil

e
to

be
cr

ea
te

d.
s
e
t
F
a
c
i
l
i
t
y

g
e
t
F
a
c
i
l
i
t
y

Se
t/g

et
F
a
c
i
l
i
t
y

in
st

an
ce

.
s
e
t
i
B
m
I
O
w

g
e
t
i
B
m
I
O
w

Se
t/g

et
B
e
a
m
I
O

in
st

an
ce

sp
ec

if
yi

ng
th

e
fil

e
to

be
w

ri
tte

n.
s
e
t
P
r
o
g
r
e
s
s
P
r
i
n
t

g
e
t
P
r
o
g
r
e
s
s
P
r
i
n
t

Se
t/g

et
fla

g
th

at
co

nt
ro

ls
th

e
pr

og
re

ss
pr

in
to

ut
.

69

Table 75: Definition of access methods for the PhysicalConstants class.

Set method Get method Comment
getPDGref Returns PDG reference used.
getSoL Returns speed of light in m/s.

getSpecies Returns list of particle species for which con-
stants are stored.

getParticleMASS(Species) Returns particle mass for Species. Species
is a list of strings: ["proton", "pion",

"muon", "neutrino"].
mp Returns proton mass in MeV.

getmPion Returns pion mass in MeV.
getmMuon Returns muon mass in MeV.

getmNeutrino Returns 0, neutrino mass (for nuSIM).
getm0 Returns permittivity of free space.

70

A.10 Report

The Report parent class supports a collection of derived classes to generate reports, usually in the form
of a CSV file, based on the data stored in the attributes of the Beam, BeamLine, BeamLineElement,
Particle, and other classes.

A.10.1 Instantiation

The call to instantiate the Report class is:

Report(Name, ReportPath, FileName, Header, Lines)

Name: (string) Name of report;
ReportPath: (string) String containing path to the directory where report will be written;
FileName: (string) String containing name of the file in which report will be written.
Header: (list of strings) List containing strings that will form the header record of the report; and
Lines: (list of lists) The lines that will make up the lines of the report. List[i][j] provides the value of the

item to be recorded in column j of row i of the report.

A.10.2 Instance attributes and access methods

The Report parent class supports a collection of derived classes to generate reports, usually in the form
of a CSV file, based on the data stored in the attributes of the Beam, BeamLine, BeamLineElement,
Particle, and other classes. instance attributes are presented in table 76 and the access methods are sum-
marised in table 77.

Table 76: Definition of attributes of instances of the Report class.

Attribute Type Comment
NEvt integer Number of events to generate.
ParamFileName string Path to beam-line parameter CSV file.
dataFileDir string Path to the directory in which data file is to be written.
dataFileName string Name of file to be created.
Facility Facility Instance of the derived Facility class derived from

BeamLineElement.
iBmIOw BeamIO Instance of the derived BeamIO class for the file to be written.
ProgressPrint boolean If True the progress towards the NEvt requested events is printed.

Table 77: Definition of access methods for the Report class.

Set method Get method Comment
setName getName Set/get name of report.

setReportPath getReportPath Set/get path to director into which report file is to be written.
setFileName getFileName Set/get name of file to be written.
setHeader getHeader Set/get list of strings forming header fields.
setLines getLines Set/get list of lists containing report entries line by line.

71

A.10.3 Processing methods

Table 79 presents the processing methods provided in the Report class.

Table 78: Processing methods provided by the Report class.

Method Argument(s) Return Comment
createPandasDataFrame() Data frame instance Create pandas data frame using

the data contained in Header

and Lines. The instance is re-
turned.

A.10.4 I/o methods

Table ?? presents the i/o methods provided in the Report class.

Table 79: I/o methods provided by the Report class.

Method Argument(s) Return Comment
createCSV(DataFrame) Data frame instance Create CSV file from pandas data

DatsFrame frame using the data con-
tained in Header and Lines.

asCSV() Write pandas dataframe and write it to CSV
file.

A.11 LaTeX

The LaTeX module provides 2 methods to support the generation of LaTeX tables from data stored in the class
and instance attributes. The first method, TableHeader, creates the header of LaTeX table. The method is
accessed via the call:

TableHeader(FilePath, TabString, Caption)

where:
FilePath: (path) is the full path to the file to contain the table;
TabString: (string) is the string that defines the columns, e.g., ’|c|c|’, would result in a two-column

table in which the contents of each column is centred; and
Caption: (string) Is the string to be used as the table caption; and

Each line in the table are entered with the call:

TableLine(FilePath, Line)

where:
FilePath: (path) is the full path to the file to contain the table;

72

Line: (string) is a list of strings that contain the contents of the line. A typical use case would be to create
the table header, enter a line containing the header fields and then procede to add each line in the table in
turn; and LaTeX commants are allowed, e.g. Line = \hline will produce a horizontal line.

The final lines of LaTeX code is entered with the call:

TableTrailer(FilePath)

where:
FilePath: (path) is the full path to the file to contain the table.

73

B Set-up and run

B.1 Introduction

This section summarises the steps needed to set-up and run the LhARA linear optics package. The code has
been developed in python; python 3 is assumed.

It is assumed that most users will want to use the code rather than develop new features. The instructions to
set up your “UserFramework” are given in section B.6.

B.2 Getting the code

The linear optics package is maintained using the GitHub version-control system. The latest release can be
downloaded from:

https://github.com/ImperialCollegeLondon/LhARAlinearOptics.git

B.3 Dependencies and required packages

The linear optics code requires the following Python modules:

matplotlib, numpy, and scipy.

It may be convenient to run the package in a “virtual environment”. To set this up, after updating your python
installation to python 3, execute the following commands:

1. python3 -m venv --system-site-packages venv

• This creates the director venv that contains files related to the virtual environment.
2. source venv/bin/activate

3. pip install -r requirements.txt

To exit from the virtual environment, execute the command deactivate.
The command source venv/bin/activate places you back into the virtual environment.

B.4 Unpacking the code, directories, and running the tests

After downloading the package from GitHub, or cloning the repository, you will find a “README.md” file
which provides some orientation and instructions to run the code. In particular, a bash script “startup.bash”
is provided which:

• Sets the “LhARAOpticsPATH” environment variable so that the files that hold constants etc. required
by the code can be located; and

• Adds “01-Code” (see below) to the PYTHONPATH. The scripts in ”02-Tests” (see below) may then
be run with the command ”python 02-Tests/<filename>.py”.

Below the top directory, the directory structure in which the code is presented is:
01-Code: contains the python implementation as a series of modules. Each module contains a single class

or a related set of methods.
02-Tests: contains self-contained test scripts that run the various methods and simulation packages defined

in the code directory.
11-Parameters: contains the parameter set used to specifiy the various beam lines presently implemented.

The instructions in the README.md file should be followed to set up and run the code.

74

https://github.com/ImperialCollegeLondon/LhARAlinearOptics.git

B.5 Running the code

Execute ”startup.bash” from the top directory (i.e. run the bash command ”source startup.bash”).
This will:

• Set up ”LhARAOpticsPATH”; and
• Add ”01-Code” to the PYTHONPATH. The scripts in ”02-Tests” may then be run with the command

”python 02-Tests/<filename>.py”;
• Example scripts are provided in ”03-Scripts”, these can be used first to “Run” the simulation and

then to “Read” the data file produced. Example scripts are provided for the DRACO, LION, and LhARA
Stage 1 beam lines.

B.6 User framework

It is assumed that most users will want to use the code rather than develop new features. To facilitate easy use
of the package, the directory tree “31-UserDirectory/” has been provided. To use the code, copy the files
and directories in 31-UserDirectory/ to your own space. The environment is set-up by executing:

source <LhARAOpticsPackage>/venv/bin/activate

where <LhARAOpticsPackage> is the path to the directory in which the LhARA linear optics package was
installed. The environment variables are set using:

source user_startup.bash -p <path to LhARAOpticsPackage>

75

	Introduction
	Coordinate systems
	Laboratory coordinate system
	Reference particle local coordinate system
	Transforming to and from reference particle local coordinates to laboratory coordinates

	Phase space, trace space, beam parameters
	Phase space
	Trace space
	Beam parameters

	Transfer matrices
	Drift
	Quadrupole
	Solenoid
	Non-neutral (electron) plasma (Gabor) lens
	Dipole
	Cylindrical cavity

	Source
	Energy distribution
	Angular Distribution
	Spatial distribution
	Simulated distributions

	Beam-line specification and scripts
	Beam-line specification
	Scripts

	Acknowledgements
	References
	Class and data structures
	BeamLine
	Particle and ReferenceParticle
	Beam and extrapolateBeam
	BeamLineElement
	UserFramework
	visualise
	BeamIO
	Simulation
	Physical constants
	Report
	LaTeX

	Set-up and run
	Introduction
	Getting the code
	Dependencies and required packages
	Unpacking the code, directories, and running the tests
	Running the code
	User framework

