LhARA WP2 – Work Package Management Meeting #2 – 15/11/2022

7. AOB

LhARA WP2 Introduction/Reminder....

LhARA - Project organisation

- WP1 Project management
- WP2 Laser Driven proton and ion source
- WP3 Proton and Ion Capture
- WP4 Real-time dose-deposition profiling
- WP5 End station development & Instrumentation
- WP6 Facility design and integration

https://ccap.hep.ph.ic.ac.uk/trac/wiki/Resear ch/LhARA/LaserDrivenSource

Update on LhARA... partners

Planned objectives for WP2 activity (Oct 2022 – Oct 2024)

Years 1-2: preliminary activity

Baseline simulation campaign to optimise source

- Hydrodynamics simulations of low intensity "prepulse"
- Full-scale 3D particle-in-cell simulations of ion generation

Single-shot LhARA spec. proton generation (SCAPA, Strath)

- Proton generation on SCAPA, matched to LhARA laser
- Parametric optimisation

Ion generation at 10 Hz (Zhi/Cerberus lasers, ICL)

- Targetry requirements at 10 Hz
- Source monitoring and stabilisation

WP2 project plan...

LhARA WP2 Gantt Chart

• Deliverables for the first two years are focused on early experiments and source benchmarking in simulations, as well as initial technology development in diagnostics and targetry.

Planned objectives for WP2 activity

Years 3-5: preconstruction programme

- Construction of bespoke diagnostic suite
 - Laser spatial and temporal measurement
 - Ion spectral and spatial measurement
- Optimisation of heavy ion acceleration
 - Contaminant control at high repetition
- Development of advanced 10 Hz target platform
 - Water jet target
 - Active target stabilisation and debris control
- Integration of developed laser ion source technologies
 - Demonstrate integrated source and diagnostic system and compatibility with capture
- LhARA specification beam generation at 5 Hz
 - SCAPA experiments for near-full scale LhARA beam generation over ~1 hr duration

WP2 Technology Development Programme:

Experiments & Technology Development in 2-year Programme: Characterising Source and Benchmarking Simulations

Established Targetry...moving toward Hz-level targetry

Typical 9-target array

Tape targetry system (online in SCAPA 2022)

....to build a systematic parameter space map of the source performance

• Energy, Flux, Divergence across multiple ion species

..but also need to consider some other experimental contributions like temporal contrast

Experiments & Technology Development in 3-year Programme: Producing a stable, high-rep source

Courtesy of C. Palmer

- Reduces production of debris
- Increases operational time and possible rep rate

Advanced Particle & Laser Diagnostics

D. Marsical *et al.*, Plasma Phys. Control. Fusion 63 (2021) 114003

- Implementation of advanced (existing) particle diagnostics, taking account of long term operation.
- Implementation of full laser diagnostic suite to support automation, stabilisation.

ML/AI Control & Optimisation

- Application of ML techniques (e.g Bayesian Optimisation) for parameter space
- Application of AI techniques (DNNs, CNNs) for system control and virtual diagnostics

LhARA WP2 – Work Package Management Meeting #2

Channels

- # general
- # Ihara-scapa
- # Ihara-simulations
- # Ihara-wpm
- # random
- Add channels

Ihara-source.slack.com

Invite link: https://join.slack.com/t/lhara-source/shared_invite/zt-1jawhl1k0-du69ITEEEy4RvryAx_81Pg