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The diocotron (or slipping stream) instability of low density (wp, < w.) electron beams in crossed
fields is considered for a cylindrical geometry. For a simple density distribution, the normal modes
of the electron beam correspond to a continuum of eigenvalues, plus two discrete eigenvalues. Work
due to Case and Dikii appears to show that the continuous spectrum is not important in stability
studies of this type. The condition for stability considering the discrete modes only is derived; under
suitable geometrical and electrical conditions, it is shown that these modes can be stable. The analogy
between the electromagnetic problem considered here and the problem of the stability of an ideal
rotating fluid is discussed. It is shown that stability conditions derived for the latter problem depend
on the possibility of axial perturbations; what this implies for the electron beam problem is briefly

discussed.

INTRODUCTION

HE Diocotron (or slipping stream) instability
has been known for some time,' * and it forms
the basis of the small-signal theory of the crossed
field microwave magnetron. For one reason or an-
other, however, it appears that this instability has
not been extensively studied in a cylindrical geom-
etry. This situation, although somewhat surprising
at first sight (since magnetrons are generally cylin-
drical) may possibly be explained by the observation
that the annulus in which the electron beam travels
frequently has a rather small aspect ratio and can
therefore be approximately treated as planar. What-~
ever the situation in this regard, certain phenomena
relevant to thick beams in cylindrical geometries
are not adequately treated by the planar theory.
Thus, it is known from the planar theory of thick
electron beams that such beams are always unstable
to perturbations having sufficiently long wave-
lengths. However, it has been pointed out’ that
when a thick beam is moving around a circular (or
other closed) path, that an upper limit to the wave-
length of permissible disturbances is approximately
given by the perimeter of the path. Thus, the ques-
tion arises as to whether an electron beam moving
in a circular path in crossed electric and magnetic
fields can be stabilized by being made sufficiently
thick. It is the purpose of this note to give a quantita-
tive evaluation of this effect.
1 (4. C. MacFarlane and H. G. Hay, Proc. Roy. Soc.
(London) 63B, 409 (1953).
2 Q. Buneman, in Crossed Field Microwave Devices, edited
by E. Okress (Academic Press Inc., New York 1961), Chap. 5.
3 R. W. Gould, Electron Tube and Microwave Laboratory,

California Institute of Technology, Technical Report No. 3
(1955).

¢ B. Epsztein, Compt. Rend. 240, 408 (1955).

5 W. Knauer, Hughes Research Laboratory, Research
Report 332 (1960).

BASIC FORMULATION

We consider the geometry illustrated in Fig. 1.
Two concentric, perfectly conducting cylinders of
radii @ and d are aligned along the z-axis. A constant
uniform magnetic field of strength B acts in the
z-direction. In the basic (unperturbed) state the
space between the electrodes is filled with electrons
having a density n,(r) where r is the distance from
the axis. Following Gould’s analysis of the planar
case, we suppose that the electron density is suf-
ficiently low relative to the magnetic field intensity
that w, < w,, the symbols referring, respectively, to
the plasma and cyeclotron frequencies. The unper-
turbed state is then defined by a radial electric
field E,(r) which is related to the electron density by
Gauss’ law:

)

OUTER
CONDUCTING
CYLINDER

CYLINDERYS

Fic. 1. An illustration of the basic geometry considered
in the text.
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The electric charge on the inner electrode (per unit
axial length) is just

Q = 2raekq(a). )

@ can be equal in magnitude (but opposite in sign)
to the total charge in the electron cloud, but it can
also have any other value. Each value of @ corre-
sponds to a definite value of the potential between
the inner and outer eylinders. The electrons move
(in the unperturbed state) in the azimuthal direction
with velocity v, = —FE,/B.

We consider next the perturbed motions of this
system. To start with, we consider only two-dimen-
sional perturbations, but we give a brief discussion
of three-dimensional perturbations at a later stage.
Once again following Gould, we apply the quasi-
static approximation and assume that the electric
field due to any perturbation can be treated as
irrotational. We anticipate the result that the fre-
quencies of interest in this study are on the order
of w?/w,, that is, much less than w, and hence, a
fortiori, much less than .. This observation justifies
taking for the electronic equation of motion

E, = —uB, E, = uB, (3)

where (u, v) and E,, E, are, respectively, the radial
and azimuthal components of the velocity and elec-
tric fields. The quasi-static assumption implies first
the existence of a potential ¢,

= 9 - 1
r aT ) EG - r 60 y . (4)
and second, from Eq. (3),
19 1 v .
;ar(m)+rag—d1vv— . 6)

In addition to the above, we have the equation of
conservation for the electrons:

an/dt +ndivv + v-Vn = 0. 6)

In view of Eq. (5), the middle term in Eq. (6)
vanishes; thus

Dn=§ﬁ+v-Vn=

Dn dn, 10@,n)
Dt~ at at t 0. @

Br a(r, 6)

This condition states simply that the electron
density of any small parcel is conserved following
the motion, even though the density varies spatially
or temporally.

We now linearize by assuming

¢ = ¢o(1‘) + ¢(T) exp {Z(ZB - wt)}) (8)
n = ny(r) + n() exp {i(16 — wi)},

INSTABILITY IN CYLINDRICAL GEOMETRY
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where, as usual, the physical quantities are the real
parts of the complex quantities appearing in Eq.
(8). On linearization, Eq. (7) yields

o — 1) = _lo.dno
T

Br dr ©)
Substituting Eq. (9) in Poisson’s equation yields,
finally,

_ @){1@_( g@) _r } _ —elb dny
<w r ) \rar \ dr 2 " & Brar

Up to this point, we have left the choice of zero-
order profile entirely free. We shall now make a

choice governed by considerations of convenience.
We assume

ne =0 (@<r<bje<r<Ld),
no=N (b<r<e.

The purpose of this choice is that it makes dno/dr = 0
in each of three regions. In the interior of these
regions, then, Eq. (10) reduces to the much simpler

form
1d d_d’) ro_
rdr(rdr _rzd’_o

and we also have, from Eq. (9), n = 0. Thus, the
perturbation we have to deal with is much simplified
and involves (as noted by Gould) no perturbation
charge density at all in the interior of the electron
cloud, but merely an accumulation at each of the
two free surfaces. This observation leads us to con-
sider the conditions to be applied across the free
surfaces r = b and r = c. In the first place, we must
clearly assume the perturbation potential to be
continuous across these surfaces. For obtaining the
change in d¢/dr across the surface, various methods
have been proposed, but the one that seems simplest
is as follows: we merely integrate Eq. (10) for a
short distance fromr = b — §tor = b + 6 and let
6 — 0. The bracket containing w has virtually a
constant value in this range and can therefore be
taken out of the integration. On the right-hand side,
dny/dr can be treated as a delta function, while
¢ (and [ ¢ dr), being continuous, give no contribution
to an integral over a vanishing range. Putting these
facts together yields
d¢

(- - %

The specification of the problem is now completed
by noting that the boundary conditions appropriate
to eonducting electrodes at » = a and r = d are
simply ¢(a) = ¢(d) = 0.

(10)

(11)

(12)

(13)

} _ o (b))
b— We b
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At this stage, it would appear that the problem is
completely solved, at least in principle. We have
only to write down the eigenfunctions which satisfy
Eq. (12) in the three regions, apply the boundary
and jump conditions, and derive the characteristic
equation. In the present case, the characteristic
equation will have the form of a polynomial in w,
the degree of the polynomial corresponding to the
number of surfaces at which n,(r) is discontinuous.
This can also be explained by noting that a surface
wave can propagate at each discontinuity, so that
clearly the number of such waves is just the number
of such surfaces. For the unperturbed density profile
described in Eq. (11), this number is just two. Since
the coefficients of the polynomial are all real, the
roots will be either real, or will oceur in complex
conjugate pairs. In the latter case, obviously, one
root corresponds to a growing (unstable) wave and
the other to an evanescent (damped) wave. There-
fore, stability can only be claimed when all the roots
of the characteristic polynomial are real, in which
case each surface wave can propagate at constant
amplitude.

It is clear, however, that the method described
above cannot, as it stands, be used to make any firm
statement about stability. This is because such a
statement can only be made when we have obtained
a complete set of normal modes; in the present case,
we have a very restricted set corresponding in num-
ber to the number of surface discontinuities present
in the unperturbed state. That this set is not com-
plete is easily seen by observing that no initial
condition involving a perturbation in the charge
density can be described by them. Now an analogous
problem has been extensively treated by Case’'’
and Dikii® in connection with the problem of aero-
dynamie shear flow. This problem is mathematically
identical to the slipping electron stream problem
provided, as assumed here, w, << w.. Case points out
that when dn,/dr = 0, the solution of Eq. (10)can
be written

1d d I v,
;a<"a‘§)'—ﬁ¢=“( —%>’ (14)

where A is an arbitrary constant. The eigenfunctions
corresponding to Eq. (14) give rise to a continuous
spectrum of real eigenvalues, the spectrum covering
all angular frequencies present in the unperturbed
state. Fach eigenfunction corresponds to a delta

s K. M. Case, Phys. Fluids 3, 143 (1960).

7 K. M. Case, Phys. Fluids 3, 149 (1960).

s L. A. Dikii, Dokl. Akad. Nauk SSSR 135, 1068 (1960)
[English transl.: Soviet Phys.—Doklady 5, 1179 (1960)).

LEVY

funection perturbation of charge density at what
might be called the corresponding resonant layer.
Case shows, in a particular case, by using the method
of the Laplace transform, that perturbations in-
volving these eigenfunctions decay at long times
like various algebraic powers of the time. Therefore,
the stability will depend only upon the behaviour of
the discrete normal modes, that is, those picked out
by the previous discussion. This proof is given in
more general form by Dikii, and it is upon the valid-
ity of this proof that our work, together with that of
Gould, and a large amount of earlier work in the
field of aerodynamic shear flows, depends. Among
the aerodynamic work, we particularly note the
work of Goldstein’ who considers a profile having
no less than five discontinuities, and hence is forced
to consider the roots of a quintic polynomial. This
work points out that, if one is willing to undertake a
large amount of tedious work, an arbitrary con-
tinuous profile of (say) electron density, can be
satisfactorily approximated by a small number of
segments in each of which the electron density has a
different constant value.

Before leaving this point, we should perhaps insert
a caution along the following lines: According to
Dikii, the results obtained by a stability analysis
of the flow of an inviscid fluid do in fact agree with
the results obtained when a small viscosity is al-
lowed, and then made to tend to zero. This is an
important point, since the eigenfunctions corres-
ponding to the continuous spectrum have discon-
tinuous derivatives; these jumps cannot represent
physical fact in a real medium. To smooth out the
jumps, it is necessary to introduce more physies, and
in the fluid case, this physics is just the viscosity.
Dikii’s observation is therefore of importance when
interpreting the ideal stability analysis. In our me-
dium, the jumps in the eigenfunctions are also not
physically acceptable, however, smoothing them out
is obviously not to be accomplished by the simple
addition of a diffusivity, but would require considera-
tion of the electron dynamics by means of a velocity
distribution function. We therefore make the as-
sumption (which seems plausible but no more than
that) that Dikii’s result is independent of the details
of the physical process whose neglect resulted in the
discontinuous eigenfunctions.

ESTABLISHMENT OF THE STABILITY
CONDITION

No further difficulty of a theoretical nature re-
mains at this stage, and we can proceed directly to

? 8. Goldstein, Proc. Roy. Soc. (London) A132, 524 (1931).
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write down the eigenfunctions, the dispersion rela-
tion, and the condition that both the roots of the
latter should be real. The first step is to note the
zero order potential and electric field distribution
that are implied by the distribution of charge given
in Eq. (11). Taking the conductor at r = a to be at
zero potential, we find in region 1 that

__Q __9 . r
B, = 2megr ®o = 2me, In a (15)

In region 2, we find

E():_(?__M(T__lz),

(16)
__Q . Neb?{i_ _ z}
Po = 2mey In a + 4¢, \° 1—21n b
In region 3, we find
= [@ — Ner(c® — b*)]/2mer,
__ 9, Ne
b = 2mey, @ + 4e,
-{(cz ~ )+ 2" In” — 2’ m%} 7
The potential of the outer conductor, at r = d is

related to the charge on the inner conductor by

Ql Ne

¢O (d) = 460

.+.

-{(cz — B+ 2 1n§ — 2 In %} (18)

The solutions of Eq. (12) are the simple functions
r*!, We therefore take for the eigenfunction in

region 2,'°
=8 + ! (19)

where § and vy are arbitrary constants. The eigen-
function appropriate to region 1 must vanish at
r = a, and be continuous with Eq. (19) at r = b.
Thus,

¢ = (B + 0" — )T — )T (20)

The eigenfunction appropriate to region 3 must
vanish at » = d, and be continuous with Eq. (19)
at r = c¢. Thus,

6= B + @ — M@ = @D
The condition Eq. (13) on the jump in d¢/dr at

¢z,

16 The mode I = 0 has no nontrivial solution. This can be
seen as follows: Eq. (13) shows that for this mode d¢/dr as
well as ¢ is continuous at r = b, ¢. The eigenfunction ¢ =
A + B In r is therefore valid in all three regions. If ¢(a) =
¢o(d) =0,4A =B =0.
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r = b, together with the similar one at » = ¢ now
yield :
Q! > 21
2(“’ t oene?/ B
= @B+ - ), (22
) oo
[2((.0 + 27 Ned? 1 pe Bd™ + 'Y)
— ""(B + ’YC_2l)( 2l c2l . (23)

In these equations, and hence forward, the unit of
frequency has been taken to be w?/w,, or Ne/eB.
The dispersion relation is now obtained by writing
down the condition for consistency of these two
linear homogeneous equations in 8 and 7.

_4w2(d2l . a21)

u _éi)_ Q ( b_)}

+ 2w|:l(d ){(1 e 1rNeb2 1+ 62

+ (bzzczt _ azzdzz)(czt _ bzz)b—zzc—zz:l
12Q<_b_2_Q>2,_2,

+ [TN@bZ 1 & aNed ( a’)

_ r]\lrgbz (c2l — azl)(d2l _ 621)0—21

21 b—2l

_Ii ) 21 21y 17 21
— l(l ~F T iNe? @ = )" —a

+ (c2l _ b2l)(d2l . 621)(b2l . a21)b—216—2lj| — 0.

(24)

The condition for reality of the roots of this quad-
ratic in w which is also the condition for stability
of the distribution described, is now easily extracted.
After some reduction, the condltlon for stability
can be written as

["l<1 + ﬂ\ng)(l
i

+ 2(d2l + a2l) — (c2l + b21)<b2l 1 + 1)]

2
— _i_z)(dzl - azl)

_ B%ﬁ (dZI _ 621)2(b2l _ a21)2 Z O. (25>

DEDUCTIONS FROM THE STABILITY
CONDITION

Several simple deductions are possible from the
stability condition, Eq. (25). Firstly, it is important
to note that the condition Eq. (25) can always be
fulfilled for any geometry by having a sufficiently
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large positive or negative value of Q. Alternatively,
the condition for instability will only be satisfied
by a definite limited range of values of @ (or of the
unperturbed potential between the conductors).

Secondly, we note that if either d = ¢, or b = q,
Eq. (25) has the form of a perfect square, guarantee-
ing the satisfaction of the stability condition. The
physical meaning of this is simply that if either edge
of the beam is in contact with a fixed conductor, the
wave that would normally be associated with that
edge can now no longer exist. Alternatively, the
dispersion relation for this case, if derived ab ¢nitio,
is now simply a linear equation in w, and therefore
incapable of having complex roots. In such a case,
the system is capable of only one real frequency of
oscillation for any .

A simple limiting case of some interest involves
letting d — o (removing the outer conducting cyl-
inder) and setting Q = wNe(c® — b*) so that the
positive charge on the inner cylinder equals the
negative charge in the electron cloud. This implies,
from Eq. (16), that E, vanishes for r > ¢. The con-
dition for stability in these circumstances becomes

2 21 21 2
[ —) 2 -G (14 5]

b2l 21\ 2
—4?JL—%)20. (26)
For simplicity we restrict our attention to the mode
l=1

(@ — b)*(@2bc — & — ¢*)(—2bc — a® — %) > 0.
27)

The factor (¢ — b°)° is always > 0 and may be

dropped. The last factor is always negative. The
stability condition is thus, finally,

&+ & > 2be. (28)

Regions of stability for this case for the mode I = 1
and a few higher modes are shown in Fig. 2. In this
case, the eylinder at r = a is at a positive potential
relative to “‘infinity.”

Another limiting case of greater interest for lab-
oratory purposes is reached by setting a = 0, that is,
removing the inner conductor. In addition, we must
set @ = O for consistency. In these circumstances,
the stability condition reduces to

2 2
_ _ D) e 2l 21 oyl
[ l(l cg>d + 2d ¢ b }

_ 4b2lc—2l(d2l — 621)2 Z 0- (29)

R. H. LEVY

6 | UNSTABLE

b/c ’ »3
.5 =2 4
JA
4 |- sTABLE deco
3k as wNelc®-H)
2 E
N ’- B
0 1 1 - L ] | L ]
o | .2 3 4 5 & 7 8 9 10
a/c

Fi1c. 2. For the case d — o, @ = 7 Ne(c® — b?) this
figure shows the geometric parameters governing the slipping
stream instability. Since ¢ < b < ¢ only a triangle on this
figure represents possible geometries. It can be seen that the
! = 1 mode is the most important. Note that the configuration
is sta;)ole when ¢ = 0, ¢ > 2b, and that it is unstable when-
ever b = c.

For I = 1 this condition reduces to

@ = &) — b 20 (30)
which condition is satisfied for all values of the pa-
rameters. This mode is therefore always stable. For
I = 2 the condition is

@ — ) + b)° — 4b%d] >0, (31)

T T T ¥ T T T

STABLE

UNSTABLE L,

c/d

bsd

F1e. 3. For the case @ = 0, @ = 0 this figure shows the
geometric parameters governing the slipping stream insta-
bility. Since b < ¢ < d only a triangle on this figure represents
possible geometries. The | = 1 mode cannot lead to instability
in this geometry; the I = 2 mode is therefore the most im-
portant. Note that when b = 0 the configuration is stable
for all values of ¢ > 0, and that when b = ¢ it is always
unstable.
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or, more simply,
c(c® + b°) > 2bd®. (32)

Regions of stability for this case for the mode [ = 2
and a few higher modes are shown in Fig. 3.

The stability condition for the plane geometry
illustrated in Fig. 4 can be derived from Eq. (25)
by letting a, b, ¢, d all tend to infinity while keeping
the differences between these lengths constant. How-
ever, in order to maintain a finite wavelength for
the perturbation, it is necessary to let [ tend to in-
finity as well, keeping £ = l/a (the wavenumber
of the perturbation in the stream direction) finite.
In this way, one obtains a relation involving ex-
ponentials. It must also be observed that in this
limit, one must replace @ by 2 woa, where ¢ is the
charge density on the inner conductor. Then, in the
limit, the term @Q/7Neb® = 2¢a/Neb® — 0, and the
actual value of ¢ becomes irrelevant. This makes
sense, since the electrie fields in regions 1 and 3 for
the plane case are constants. Without affecting the
stability question, either field can be removed by
transferring to a set of coordinates moving with
appropriate velocity parallel to the beam. The dif-
ference between the two electric fields is important,
however, and represents the velocity change across
the beam. This velocity change can be shown to

1293

LU L L iy

REGION 3

ELECTRON [

el REGION 2

X XXX XA, (d"ﬂ)

CONDUCTING (c-a)
WALLS REGION |

©s

(b-a)
Ve

Fia. 4. An illustration of the manner in which the planar
problem can be approached as a limiting case of the cylindrical
problem.

be equal to w2/w, multiplied by the beam thickness.
An important observation is that the plane case can-
not be stabilized merely by applying a large positive
or negative potential between the plates. We shall
not consider this case further, as it has been rather
thoroughly treated in the microwave and aerody-
namic literature.

It is known from the plane case that thin beams
are most unstable, and this leads us to consider the
case (1 — b/c) K 1. If we set b = ¢, it is easily seen
that the expression on the left-hand side of Eq. (25)
vanishes identically, showing that the case b = ¢ is
marginally stable. More detailed study of this case
is then necessary. One finds that for b/c slightly less
than unity, the beam is or is not stable according
as @ S —Nerb®. The marginal condition corresponds
to solid body rotation.

Tasie 1. This table lists for various values of the ratios a/d, b/d, and ¢/d, and for various
mode numbers, the range of charges on the inner cylinder, or of potentials across the two
conducting cylinders, between which instability exists. For fixed geometry, the upper and
lower potentials tend, with increasing mode number, to the same limit; this limit (which corre-
sponds to solid body rotation of the electron beam) is shown as I = . The unit of charge per
unit length is Ne «(c? — b2), the unit of potential 1s 1 Ne (¢ — b2).

a/d b/d c/d l Q1 Q2 é1 b2

0.1 0.2 0.3 1 2.75 .10 —4.95 1.15
2 1.17 —.02 —1.33 1.42
3 .43 —.13 .39 1.68
4 .06 —.22 1.24 1.89
@ —.8 3.22

0.2 0.4 0.6 1 1.96 .04 —2.46 .62
2 1.00 —.04 —.93 .75
3 .39 —.14 .05 .91
4 .05 —.23 .60 1.05
L] ~.8 1.97

0.2 0.4 0.8 1 .24 —.01 11 .51
2 06 —.06 .39 .59
3 —.05 —.11 .58 .66
4 —.12 —.14 .68 .72
© —.33 1.03

0.2 0.6 0.8 1 2.96 .02 —4.41 .32
2 1.81 —-.12 —2.56 .55
3 .98 —.24 —1.22 .74
4 .43 —.34 -~.35 .90
© —1.28 2.42

0.4 0.6 0.8 1 1.95 —.15 —1.44 .49
2 1.41 —.20 —.94 .54
3 .84 —-.27 —.42 .60
4 .39 —.35 0 .68
© —1.28 1.53
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This completes the list of simple deductions from
the relation Eq. (25). In general, any case can of
course be calculated directly from this relation. In
Table I we list, by way of example, some cases
selected more or less at random giving for each case
and for each mode the two values of @ (normalized to
Nex(c® — b°), the amount of charge per unit axial
length in the electron cloud) between which there is
instability. We also list the two corresponding values
of the potential [normalized to Ne(c® — b*)/2¢,] be-
tween the inner and outer cylinders between which
there is instability. The cases listed allow one to see
the effect of varying each of the geometrical quanti-
- ties a, b, ¢, and d in turn, holding the others constant.
For [ — =, it can be seen from Eq. (25) that the
two limiting values of @ converge after normaliza-
tion to —b?/(c® — b°); this value and the corre-
sponding limiting potential is also listed for each
case.

COUETTE-FLOW ANALOGY AND AXIAL
PERTURBATIONS

An exact analogy exists between the two-dimen-
sional electromagnetic problem discussed in this
paper, and the two-dimensional motion of an incom-
pressible frictionless fluid, the velocity fields being
the same in each case. The incompressibility of the
fluid flow field is guaranteed by Eq. (5). In the
electromagnetic case, the electron density = is re-
lated to the potential ¢ by Poisson’s equation

ne/e =V°g. (33)

The conservation of charge then gives, from Eq. (7),
D(V’¢)/Dt = 0. (34)

In the fluid case, ¢ is related to the velocity com-
ponents by Eq. (3) and Eq. (4), and therefore has
the character of a stream function. The vorticity,
¢, is then given by

_ e , e
f. - [Curl v]z « ax2 +

_ 2
o V.

(35)
The vorticity of a fluid element is conserved, fol-
lowing the motion of a perfect incompressible fluid.
Hence

D(V?¢)/Dt = 0. (36)

Finally, at a solid boundary the normal component
of velocity vanishes, corresponding exactly (through
the relation E 4 v xB = 0) to the vanishing of the
tangential electric field at a perfect conductor.

The purpose of bringing out the above analogy
is to be able to make use of the substantial body of

LEVY

work'"'"* dealing with the stability of two-dimen-
sional plane shear flows and flows between rotating
cylinders. Indeed, reference has already been made
to this work in connection with the problem of the
continuous spectrum of eigenvalues. The former case
we shall not discuss in this paper. For the latter
case, a well-known result of Rayleigh'® states that
a rotating fluid is stable only if
d
o Q‘v@z > 0. @37
This result is obtained from simple considerations of
energy and angular momentum. The analogous elec-
tromagnetic condition would be
4o
dT (7E0) 2 0~ (38)
In regions 1 and 3 [Eqgs. (15) and (17)] this condition
is marginally fulfilled. In region 2 it reduces to

_ E, <o. (39)
This condition will be satisfied at r = b if
Q <0. (40)

We have in the foregoing seen that if Q is sufficiently
large and positive, any geometry can be stabilized.
What is the meaning of this apparent paradox?

The result [Eq. (37)] appears to be concerned
only with conditions in the plane. In reality, how-
ever, it depends for its validity upon the possibility
of an interchange which can take place only with
motions in the axial direction. Formally then, at
least, it is hardly surprising that an analysis neglect-
ing motion in this direction should arrive at results
which are quite different from Eq. (37). We still
have the possibility, however, that any stability
predicted on the basis of Eq. (25) in violation of Eq.
(37) may be spurious since axial motion may in fact
allow interchanges to take place.

We shall confine ourselves in this regard to a few
observations. In the first place, when three-dimen-
sional motions are considered, the analogy discussed
breaks down. This is seen most simply as follows:
E + vxB = 0 implies £, = 0 and hence no axial
fields. But the equation of motion of the fluid is
governed simply by the axial pressure gradient. To
obtain axial motions in the electromagnetic prob-
lem, we are obliged to introduce more physics, and
In particular we must write an equation governing
the desired axial motion. Such an equation should

1 8. Chandrasekhar, Hydrodynamic and H ydromagnetic
Stability (Clarendon Press, Oxford, 1961).

2 C. C. Lin, The Theory of Hydrodynamic Stability (Cam-
bridge Umverslty Press, London, 1955).

3 Lord Rayleigh, Scientific Papers (Cambridge University
Press, London, 1920), Vol. VI, p. 447.
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bring in the effects of finite electron ‘“temperature”
and mass. More correctly, one should use the Vlasov
system of equations to obtain a kinetic description of
the situation.

At present, effects of this type and their implica-
tions are not fully understood. It is clear, however,
that a high electron temperature, corresponding to
easy motion along field lines, will have a strong
tendency to nullify electric fields in the z-direction,
and hence to validate our two-dimensional results.

CONCLUDING REMARKS

It has been demonstrated that, when axial effects
can be ignored, proper selection of dimensions and
potentials can ensure stability against the diocotron
effect in eylindrical geometries.

Note added in proof. Contrary to the statement

INSTABILITY IN CYLINDRICAL GEOMETRY
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in the introduction, Buneman'* has considered the
diocotron instability in a cylindrical geometry. How-
ever, he treats the case w?/w? = 1 which is unstable
in all geometries. Also, Feinstein and Kino'® have
used the adiabatic equation of motion (3), but in
a somewhat different context.
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The instability arising due to a tangential discontinuity of velocity in an unbounded, anisotropic
plasma subject to a uniform magnetic field is investigated using the Chew, Goldberger, and Low approx-
imation. Formal conditions for monotonic instability and the growing-wave instability are written.
It is found that monotonic instability is possible, for a range of relative speeds, only if the plasma is
characterized by the condition 2py; > p,. For 2p;; < p, the configuration is, however, overstable
for relative speeds less than a certain critical value. The bearing of the results on the stability of the
magnetospheric boundary and the coronal streamers is discussed and it is suggested that a possible
fine structure in the solar wind may satisfy the requirement for instability and thus produce irregu-
larities of plasma properties and the magnetic field in the medium.

INTRODUCTION

HE purpose of the present paper is to investi-

gate the Kelvin—Helmholtz instability, arising
because of a tangential discontinuity of velocities
between two streams of a homogeneous, nondis-
sipative, anisotropic plasma. This problem is of
interest in a variety of astro- and geophysical situa-
tions, e.g., the stability of the magnetospheric
boundary, coronal streamers moving through the
solar wind. The instability of the magnetospheric
boundary, if ascertained, would help in understand-
ing of the phenomena of magnetic storms, aurorae,

* On leave from Department of Physics and Astrophysics,
Delhi University, India.

and radiation belts. Again the solar wind may
possess a fine structure resulting in a tangential
discontinuity of velocity between adjacent streams.
The instability of this fine structure would result
in production of irregularities of plasma properties
and the magnetic field in the incoming solar wind
and this may be the cause of the irregularity in the
direction and the magnitude of the solar wind mag-
netic field vector as given by Explorer 10 and 12,
and IMP I measurements.’

Previous investigations on Kelvin-Helmholtz in-

1 L. J. Cahill and P. G. Amazeen, J. Geophys. Research
68, 1835 (1963); J. P. Heppner, N. F, Ness, C. 8. Scearce, and

T. L. Skillman, ¢bid. 68, 1 (1963); N. F. Ness, C. 8. Scearce,
and J. B. Seek, ibid. 69, 3531 (1963).



