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Diocotron Instability in Plasmas and Gas Discharges 

W. KNAUER 

Hughes Research Laboratories, Malibu, California 
(Received 29 April 1965) 

The wave interaction underlying the diocotron effect is re-examined and a physical ~odel ~£ the inst~­
bility presented. A wave analysis is then given for circular, wall-enclosed charge lay:rs WIth finite ~ength In 

the axial direction; Circular layers are of particular interest, since they apply ~o v~nous plasma, discharge, 
and electron device geometries. Their instability behavior is found to be slID1lar m many respects to the 
behavior of linear charge sheets, described in earlier work by R. W. Gould. In cont;ast to ~near sh;ets, h~w­
ever, circular layers are unstable only when their thickness is su~ciently small. ThIS effe~t IS assocIated WIth 
the inability of charge perturbations to have a wavelength which exceeds the l:,~er circumf;rence. D~ta 
are presented for the magnitude of growth in various configurations and for the cntlcallayer Width at which 
growth terminates. 

I. INTRODUCTION 

T HE "diocotron effect" or "slipping stream in­
stability" occurs in unneutralized charge sheets 

of finite width in the presence of a magnetic field. The 
term "diocotron effect" has been coined to indicate 
that the sheet charges must "give chase," or more 
precisely, must slip parallel to the sheet surface to 
create the instability. Such a slip can result when 
the charges are subjected to the space-charge fields of 
the sheet as well as to a suitably applied magnetic 
field. With a magnetic field directed into the depth of 
the sheet, the charges carry our E x B drifts parallel 
along the sheet. Since the intensity of the ~pace-charge 
field increases across the sheet, the magmtude of the 
drift varies accordingly and the sheet slips. 

The instability itself is the result of an interaction be­
tween two waves which propagate along the sheet sur­
faces. These waves resemble water surface waves in 
many respects. Unlike water waves, however, they can 
propagate in only one direction. Waves a~ the up~er 
and lower sheet surfaces must propagate m OppOSIte 
directions. Since propagation is relative to the motion 
of the surface charges, the slip from surface to surface 
affects the velocity with which waves at the upper and 
lower surfaces meet. Generally, the slip tends to slow 
down the rate of encounter and, under suitable condi­
tions the two waves. can be halted completely. Mutual 
inter~ction then produces a single, exponentially growing 
wave mode. 

Discovery of this phenomenon dates back to a war­
time study of electron dynamics in magnetrons by 
Buneman.1 Analytic descriptions of the instability 
have been given by Buneman,2 McFarlane, and Hay,3 
Gould/·s Kyhl and Webster,S and by Pierce.7 While 

10. Buneman, C. V. D. Report Mag. 37 (1944), also J. Elec­
tronics 3, 1 (1957). 

2 O. Buneman, J. Electron. Control 3, 507 (1957). 
3 G. G. McFarlane and H. G. Hay, Proc. Phys. Soc. (London) 

B63,409 (1950). 
4 R. W. Gould, California Institute of Technology Electron Tube 

and Microwave Laboratory Tech. Report No.3 (1955). 

these presentations concern the same basic configura­
tion-a flat charge sheet-they cover different ratios of 
plasma to cyclotron frequencies. T~e general n:eatment 
for arbitrary ratios wp/wc is analytically very Involved 
and has not been accomplished to date. McFarlane and 
Hay have been able to solve the special caSe wp /wc=.1. 
Gould later provided solutions under the assumption 
wp/wc«l, which includes many situations of interest. 
Finally, Kyhl and Webster, as w.ell as ~i~rce, have 
treated the case of arbitrary wp/wc m the lImIt of small 
sheet widths. 

Few of the charge layers in actual crossed field 
configurations can be analyzed satisfactorily in terms 
of flat charge sheets in free space. Most of ~hese layers 
in plasmas, discharges, and electron deVlces are of 
circular geometry and are enclosed by walls. Mag­
netically confined plasma columns, for example, com­
prise unneutralized sheaths, which .are subje~ted to 
radial space charge fields and to an aXIal magnetic field. 
These sheaths are of cylindrical shape and are usually 
surrounded by walls. Reflex discharges also contain 
circular charge layers. Electrons trapped by the axial 
magnetic field accumulate inside the anode cylinder to 
form an unneutralized, cylindrical charge layer. 

Among other crossed field configurations which· co~­
prise unneutralized charge layers are some of the expen­
mental thermonuclear plasma devices, notably the E 
layer of the Astron and homopolar plasmas. In addition, 
the charge layer of a recently proposed space-charge 
radiation shield for space vehicles, 8 which surrounds the 
spacecraft and which is magnetically confined, falls 
into this category. The rotating cloud of a magnetron 
finally is the classical example for a charge layer sub­
jected to crossed fields. Actually, the familiar magnetron 
instability results from an interaction between electron 
cloud and anode circuit and hence is different from the 
diocotron effect. Nevertheless, the diocotron instability 
may play a role in the conditions for current cutoff 
and for oscillation onset in magnetrons. 

All configurations mentioned above have in common 
circular charge layers, and, for this geometry, the a R. W. Gould, J. App!. Phys. 28, 599 (1957). . 

6 R. L. Kyhl and H. F. Webster, IRE Trans. Electron DeVIces f 
ED-3, 172 (1956). 8 R. H. Levy, paper presented at 6th Annual Meeting 0 

1 J. R. Pierce, IRE Trans. Electron Devices ED-3. 183 (1956). Plasma Physics Division of APS, New York, November 1964. 
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question of stability has not yet been discussed. Ac­
cordingly, it is the objective of this paper to provide an 
instability analysis for cylindrical charge sheets, in 
which the effect of surrounding walls is taken into 
account. 

II. BASIC PROPERTIES OF DIOCOTRON 
EFFECT 

The diocotron effect belongs to a group of wave 
modes in charged particle ensembles where space­
charge fields and the magnetic field furnish the driving 
forces. In deriving these waves, a quasistatic approach 
is permissible, leading to the customary condition 

vxE=O. (1) 

The wave analysis generally includes Poisson's equation 
(in cgs units) 

v.E=411'p, 

the equation of continuity 

and the equation of motion 

dv e [1 ] 
-=- E+-(v x B) , 
dt m c 

(2) 

(3) 

(4) 

Here, u and po are the unperturbed, v and p the per­
turbed velocities and densities. E is the perturbation 
field. By suitable choice of initial and boundary condi­
tions, Eqs. (1) to (4) can be solved to yield the diocotron 
instability. Before approaching solutions for circular 
configurations, a straightforward derivation of the 
known solution for a fiat charge sheet is given to shed 
light upon the physical nature of the instability. 

First, waves are considered which propagate inside 
and along the surface of an ensemble filling the half 
space. The ensemble is assumed to be of density po, 
unneutralized, and subjected to a magnetic field B 
[see Fig. 1 (a)]. The direction of wave propagation is 
taken to be transverse with respect to B, and the wave 
amplitude to be independent of distance along B. 
Following Gould's analysis, Eqs. (1) and (4) can be 
combined to provide a field equation. If the time­
dependent quantities Ey, Ex, Vy, Vx, and p vary as 
exp[j(wt-{:Ix)], Eqs. (1) and (2) can be expressed as 

o2ExloyL{:I2EX= - j{:l41l'p .. 

Similarly, Eq. (3) becomes 

and (4) becomes 

ovyj oy- j{:lvx 
p= jpo.-----

w-{:Iu 

Vy= - (elm) (1/Q2)[j(w-{:Iu)Ey-w cEx], 

(5) 

(6) 

vx= - (elm) (1/Q2) [j(w-{:Iu)Ex+ (w c- .1)Ey], (7) 

(a) 2 y 

x 

0B 

(c) 

Uph 

Uph -

FIG. 1. Crossed field waves in a charge ensemble, filling the 
half-space. (a) Unperturbed configuration, (b) example of a 
volume wave mode, (c) "fast" surface wave mode, (d) "slow" 
surface wave mode. 

where u is the velocity slip in the x direction, .1 is the 
gradien t of u in the y direction: 

.1=.ouloy=wp
2Iwc, (8) 

and Q2= (W-{:IU)2-wc(wc-.1). Equations (5) to (7) 
yield the basic field equation 

(9) 

Unfortunately, the general solution to this equation is 
not known. Gould derived a special solution for the 
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case where the charges are neutralized. With .1=0, 
Eq. (9) becomes 

(10) 

Equation (10) is valid for arbitrary ratios of wp/wc and 
has three types of solutions. The first of these derives 
from 

(11) 

and comprises various oscillations and waves which 
are confined to the interior of the ensemble. The wave 
mechanism in one specific wave mode of this type is 
illustrated in Fig. 1 (b). It has been assumed here 
that a sinusoidal density modulation is imposed upon a 
single, infinitesimally thin charge layer along the x 
direction. In a frame of reference in which the ensemble 
is at rest (u=O), all charges move circularly at the 
hybrid frequency (wi+w c

2)i under the combined 
electric and magnetic field forces. The orbits on one 
side of the excited layer are generally much smaller 
than those on the other; this is because electric and 
magnetic forces are opposed on one side while on the 
other they are directed in parallel [see Fig. 1 (b)]. 

The other types of waves are associated with 

(12) 

Equation (12) is identical to the free space field equation 
and hence the charge density within the ensemble must 
remain unperturbed. The sheet thus has the property 
of an incompressible fluid, and perturbations can occur 
only at the surface. For an ac surface charge density, 
varying as exp[j(wt-,8x)J, Eq. (12) yields exponentially 
decaying fields which, below the surface, can be ex­
pressed as 

and above as 

Ey1=C1efiY, 

E x1= - jCle(JY, 

E y2 =C2C-(JII, 

E",2= jC2c-(JY. 

(13) 

(14) 

At the surface itself, the fields from both sides have to 
match in accordance with 

Ey218=EYlI8+4rru, 

Ex218=ExlI8' (15) 

where u is the ac surface density. In addition, con­
tinuity of charge flow across the surface requires that 

du/ dt==. j(w-,8u)u= PoVy. (16) 

If (7) is introduced into (16) (with .1=0) and if 
(13) to (16) are combined, the following dispersion 
relation obtains: 

(17) 

Equation (17) describes two surface waves. Figure 1 (c) 

illustrates the mechanism of the wave associated with 
the plus sign. This "fast" wave is closely related to the 
volume wave of (11), as can be seen from the identical 
particle orbits in both cases. The difference in oscillation 
frequency can be attributed to the presence of additional 
charges above the excited layer in the case of the volume 
wave. 

The negative sign in (17) leads to a slowly propagat­
ing surface wave, the mechanism of which is shown in 
Fig. 1 (d). In contrast to the "fast" wave case, where 
electric and magnetic field forces are oriented in parallel, 
here the forces oppose each other, resulting in a rela­
tively slow rotational motion and thus in slow propaga­
tion. The condition of the latter type of wave becomes 
particularly clear when wp/w c«1. In this limit, the dis­
persion equation (17) reduces to 

(19) 

If (19) is now introduced into (7), a simplified set of 
equations of motion obtains: 

Vy= - (Ex/ B)e, V",= (Ey/ B)e. (20) 

According to (20), the particle motion then consists 
solely of Ex B drifts. Dynamically, this means that the 
opposing electric and magnetic field forces are exactly 
equal. 

The motion pattern in both types of surface waves is 
much like the motion of water molecules in an infinitely 
deep body of water when a surface wave is present. 
Water molecules and charges alike perform circular 
motions (in the rest frame of the charge ensemble 
where u=O) in which the circle diameters decrease 
exponentially with distance from the surface. This 
equivalence extends even to configurations of finite 
depth. In both cases, the trajectories then become 
ellipses. At the bottom, the orbits degenerate into linear 
oscillations, extending parallel to the bottom surface. 
In the space-charge wave case, the bottom must be 
conductive so that this motion pattern will prevail. 
In the absence of a conductive bottom, the charge 
ensemble has a second free surface and two additional 
surface waves can arise. It is seen that the interaction 
between the "slow" waves of the two surfaces leads to 
the diocotron instability, when a velocity slip is 
present. 

For a convenient description of this interaction, one 
may choose a frame of reference in which the center 
layer of the slipping sheet is at rest [see Fig. 2(a)]. 
Since this frame is symmetrical with respect to the two 
interacting surface waves, the resultant growing 
wave mode can be expected to be stationary. Its 
variation in time and space must then be expressible 
as exp(at- j,8x) , where a is the growth rate. 

Basically the instability is treated in the limit 
wp/wc«l and is regarded as an interaction between two 
surface waves of the type given by (19). It is assumed 
that the amplitudes of both waves are the same and 
that the charge motion in each is modified by the elec-



INSTABILITY IN PLASMAS AND GAS DISCHARGES 605 

trostatic fields of the other. The surface charge 0' of 
wave 1 at the lower surface (0'=0'1=0'2) generates the 
field components 

E y12 = 27rO'e-flt , 

E x12= j27rO'e-fJt , (21) 

at the upper surface. The x component of the electric 
field produces a y directed drift 

(22) 

This leads to the following flow of charge across the 
upper surface 

(23) 

In addition, wave 2 at the upper surface generates its 
own flow. By itself, wave 2 propagates as exp[j(wt-,Bx)] 
where wand,B are related by (19). The latter equation 

. remains valid even in the presence of slip, since in the 
limit wp/wc«l both the equation of motion (20) and 
the field equation (12) remain unchanged. Hence, the 
charge flow associated with wave 2 is 

(24) 

Here U2 represents the velocity slip at the upper sur­
face, which, according to (8) is 

(25) 

The total charge flow across the upper surface then 
becomes 

dO'ddt= -tj(wp2/wc){1+[c5+ j(1-.c52)I]e-flt }O', (26) 

where the expression in brackets [ ] accounts for a 
possible phase difference between both wave com­
ponents (-1;;;;; 15;;;;; + 1). 

Existence of a single, growing wave requires that 

dO'2/dt= (a- j,BU2)O'= [a-tj(wNwc),Bt]O'. (27) 

Combination of (26) and (27) yields the dispersion 
equation 

a-tj(wNwc),Bt 
= -tj(wp2/wc){1+[c5+ j(1-c52)!]e-fJt}. (28) 

The imaginary portion of this relation determines the 
phase factor 

15= (,Bt-l)efJ t. (29) 

Introduction of 15 into the real part of (28) finally 
yields the growth rate 

a= ±!(wp2/wc) [e-2fJL (,Bt-l)2]!. (30) 

This expression is identical to one derived by Gould,4 
except for a factor which is accounted for by the different 
frame of reference. 

According to (30), the growth rate first increases 
linearly with sheet width, reaches a maximum, and 
eventually falls back to zero at,Bt"'-'1.3. This dependence 
can be explained as follows. Without mutual interaction, 

(0) 

(b) 

" / ..... -- + 
I 

y 
2 

+--.. x 

08 

FIG. 2. Diocotron effect in a linear charge sheet of finite width. 
(a) Unperturbed configuration, (b) sausage-like perturbation in a 
thick sheet with {3t= 1.3 (drawing not to scale), (c) combination 
of sausage and meander-like perturbations in a sheet of medium 
width ({3t=l), (d) predominantly meander-like perturbation in a 
thin sheet ({3t = 0.5). 

the upper and lower surface waves would propagate as 
exp[j(wt±,Bx)] or, in terms of the phase velocity, as 

Uph= ±!(wp2/wc) (,Bt-l). (31) 

Thus, only for ,Bt= 1 would both waves automatically 
be synchronized with each other. For all other values of 
,Bt, synchronization can be achieved only by interaction. 
Clearly, this takes place at the cost of growth. The 
proper amount of interaction is provided by suitable 
adjustment of the phase angle between both waves 
(see Fig. 2). At ,Bt= 0 and ,Bt"'-'1.3 the relative phase 
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FIG. 3. Comparison of the perturbed thin beam configuration 

treated by Gould3 and in this paper with the configurations 
discussed by Kyhl and Webster,6 by Pierce,6 and by Gould.4 In 
the limit of zero sheet width both have the same ac field 
configurations. 

angles are zero (0= -1) and 7r (0= + 1), respectively. 
Here, both waves tend to move fast against each other 
and since both have to apply themselves fully to 
synchronization, the growth rate is zero. For values of 
{3t closer to {3t= 1, less interaction is required for syn­
chronization and more growth can take place. At{3t= 1, 
the phase angle is t7r (0=0) and the interaction fully 
benefits growth. Actually, the maximum growth rate 
does not occur at f3t= 1, but at {3t""'0.8 where a stronger 
interaction because of larger fields at the shorter dis­
tance outweighs a less favorable phase angle. Finally, 
for {3t> 1.3, the interaction between the two waves 
becomes too weak to make synchronization possible 
and both modes must propagate separately. 

As can be seen from Fig. 2, the diocotron effect 
produces meander or sausage shaped distortions, depend­
ing upon whether the sheet is thin or thick. At inter­
mediate widths, the distortion is a combination of both. 
In all cases the charge density within the sheet volume 
remains unchanged. This is in apparent contradiction 
to several independent thin sheet analyses carried out 
by Kyhl and Webster,6 Pierce,1 and Gould. 5 In these 
analyses it has been assumed that a thin sheet with 
negligibly small slip has a meander-like shape distortion 
and at the same time carries a sinusoidal density per­
turbation. The growth rate of such a configuration turns 
out to be identical with the rate given by (30) when 
taken in the limit of small {3t. This suggests that in both 
analyses the same interaction is treated. Figure 3 shows 
that this is actually so; it illustrates that in the limit of a 
thin sheet, the ac fields of a slipping stream with shape 
distortion are identical to those of a very thin meander­
ing sheet with superimposed density perturbation. 

For completeness it appears desirable to consider the 
possibility of other unstable interactions among the 
three different types of wave modes described earlier. 
In the case of a neutralized, and hence nonslipping sheet 
of finite width, Gould has found two "slow" and two 
"fast" surface waves and an infinite number of volume 
waves, all of which are propagating. The lack of growth 
is immediately obvious from the dispersion diagram 
shown in Fig. 4. Here the dispersion curves for the 
(;jjfferept WlJ,ve mo~es do not cro~~. 

The situation in a slipping sheet of finite width is 
considerably more complicated. Since the dispersion 
equation for this case has not been determined, the 
discussion must remain somewhat vague. The special case 
wp/wc= 1, treated by McFarlane and Hay, has led to a 
solution with three unstable wave modes. One of these 
is the diocotron mode; the two others can be identified 
as interactions between one "slow" surface wave and one 
volume wave. 

An approximate dispersion diagram for this situation 
is obtained simply by assuming that a slipping charge 
sheet supports the same type of wave modes as the non­
slipping sheet and that propagation takes place relative 
to the velocity of the excited charge layer. The resulting 
w-{3 diagram (see Fig. 5) includes three crossovers be­
tween waves which agree closely with the three un­
stable modes predicted by McFarlane and Hay. 

For wp/wc= 1, all three unstable wave modes involve 
a modulation of the volume density of the sheet, as can 
be seen from (9). If wp/wc is decreased, this density 
modulation vanishes rapidly in the case of the "slow" 
wave, since (9) converts into the free space equation 
(12) for W"""Wp2/wc. This has an important consequence 
for the two surface-volume wave interactions. If they 
are to produce growth, the wave components must 
interact constructively with each other. Fields of the 
volume wave have to enhance the ac surface charge, 
and fields of the surface wave have to enhance the 
volume ac deJ?sity. However, since for wp /Ul c«1 the 
surface wave is governed by the free space equation, 
it cannot produce any ac charge density modulation 
within the sheet. Hence, in the limit wp /w c«1, the 
two surface-volume wave interactions cease to produce 
growth. Since (9) approaches the free space Eq. (12) 
as (w p /w c)4, lack of growth should extend very closely 

2 

.. ./2 
~ 
3 

>­
U 
Z 
W 
~ 

8 0 a:: 
"­
o 
W 
N 
:::i 
<t :::;; 
ex: o zj2 

2 

I 

10 

~ 20 
-

3b -------- 30 

r--- -
2b 

Ib 

1 
o 2 

NORMALIZED PROBAGATION CONSTANT {3t 

FIG. 4. Dispersion diagram of a nonslipping sheet of finite 
width (wp/wc= 1). The absence of crossovers between different 
modes suggests that an instability does not exist. Modes 1 (a) 
and 1 (b) are the volume waves described by Eq. (11). Modes 2 (a) 
and 2(b) are the upper and lower "fast" surface waves and modes 
3~a) anq 3~b) are the lower anq upper "~low" surfl\.C\f wl\ove~. 
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FIG. 5. Approximate dispersion diagram for a slipping sheet of 

finite width (wp/w.= 1). The diagram was obtained under the 
assumption that aside from a superimposed velocity slip, the 
wave modes are the same as those in a nonslipping sheet. Modes 
1 (a) and 1 (b) are volume waves with an excited charge layer near 
the upper surface; modes ICc) and l(d) are volume waves as­
sociated with a similar layer near the lower surface. Modes 2 (a) 
and 2(b) are "fast" surface waves, modes 3(a) and 3(b) are 
"slow" surface waves. The circled intersections coincide with the 
unstable modes found by McFarlane and Hay.2 

up to Wl,jW.= L Conversely, a treatment of the dioco­
tron interaction, using the free space Eq. (12), should 
be valid to ,values of wp/wc which closely approach 
unity. 

ITI. DIOCOTRON EFFECT IN CIRCULAR 
GEOMETRIES 

The instability of a circular sheet of finite length, 
as shown in Fig. 6, is discussed in this section. Equa­
tions (1) to (4) can best be solved for the ac 
potential cpo Under the assumption that cp varies as 
exp[j(wt-nO-kz)], Trivelpiece and Gould9 have 
derived the differential equation 

1 a (afji) n
2 

-- r- --cp-T'2cp=O, 
r ar ar r 

(32) 

where 
l-wp2/w2 

T=-k2 
• (33) 

1+[wN(w.2-w2)] 

Generally, the solutions to (32) can be expressed as 

or as 
cp=AJ n(Tr)+BNn(Tr) 

cp=Aln(jTr)+BKn(jTr) 

(34) 

(35) 

depending on whether T'2 is larger or smaller than zero. 

9 A. W. Trivelpiece and R. W. Gould, J. App!. Phys. 30, 1784 
(1959). 

J n, N n are Bessel functions of the first and second kind 
and In, K n are modified Bessel functions of the first 
and second kind; all are of order n. 

Originally, Trivelpiece and Gould9 applied the solu­
tions (34) and (35) to waves propagating in the x direc­
tion and standing in the () direction. Now, the reverse 
situation is of interest. In the limit of wp/w.«l, and 
in the presence of slip in the 0 direction, the equations 
of motion on which (32) to (35) are based reduce to 

'IIr= - (Ee/ B)c, '118= (Er/ B)c, 
'11.= - j(l/w) (e/m)E.. (36) 

Then, expression (33) simplifies to 

(37) 

In analogy to the linear case it is to be expected that w 
is of the order of w p

2/ w. and that T is therefore positive. 
Hence, solutions of the type given by (34) will be con­
sidered first. 

In the empty spaces adjoining the charge sheet Wp 

is zero, and the solutions to (32) can be expressed as 

cp= AI ,,(kr)+BKn(kr). (38) 

Differentiation of (34) and (38) with respect to rand 
() yields the following field equations: 

In space I, 

E8= (n/r)[A rI n(kr)+ BIKn(kr)], 
Er= j[Alln'(kr)+BIK,,'(kr)]. (39) 

In space II, 

Ee= (n/r)[Ard ,,(Tr)+ BIIN n(Tr)], 
Er= j[A lIfn'(Tr) + BlINn' (Tr)]. (40) 

In space III, 

Ee= (n/r)[A IIrIn(kr)+BIIlKn(kr)], 
E.= j[A IIrIn' (kr) +BmKn' (kr)], (41) 

08 

FIG. 6. Cylindrical sheet configuration of finite length 
with surrounding walls. 
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whereby the primes represent differentiations with 
respect to r, not Tr or kr, as is customary. These field 
components have to match at common boundaries. 
At surface 2, 3 one has 

E9a=Ed2, 

Era=Er2+4mTa, 

and similarly at surface 4,5 

(42) 

which, together with the equations of motion (36), 
yield 

W p
2 E9a 

471"0"a= - j , 
We w- (n/b)ua 

(45) 
W p

2 E94 
471"0"4= j . 

We w- (n/e)u4 

Here, Ua and U4 are the slip velocities of the two surfaces. 
E96=E94, 

E r6 = Er4+47r0"4. 

Finally, at the conducting boundaries 1 and 6, the 
(43) tangential field components must vanish. 

The surface charge densities O"a and 0"4 can be deter­
mined from 

dO" / dt = Vrpo, (44) 

N n(Tb) b/n[F-N n'(Tb)/N n(Tb)][w- (n/b)ua]-w p
2/wc 

In(Tb) b/n[F-Jn'(Tb)/Jn(Tb)][w- (n/b)ua]-wNwe 

E 91 =O, E96=0. (46) 

By suitable manipulation of (39) through (46), one 
obtains a dispersion equation: 

N n(Te) e/n[G-N n'(Te)/N n(Te)][w- (n/e)u4]-wp
2/wc 

(47) 
In(Te) e/n[G-Jn'(Te)/Jn(Te)][w- (n/e)U4]-Wp

2/we ' 

where 
Kn(ka)1 n' (kb)- Kn' (kb)1 n(ka) 

F 
Kn(ka)1 n(kb)- Kn(kb)1 n(ka) 

Kn(kd)1 n' (ke)- Kn'(ke)1 n(kd) 
G 

K n (kd)1 n (ke) - K n (ke)1 n (kd) 

Under the assumption that the sheet charges are un­
neutralized, the velocity slips Ua and U4 can be deter­
mined from 

(a/ ar) (rEo) = 471"po, (48) 

where Eo is the field which results from the unperturbed 
sheet charges po. If (48) is combined with the equations 
of motion (36), and if Ua is arbitrarily set to be zero 
(which establishes a frame of reference), one obtains 

u4=HwNwc)[e- (b2/c)]. (49) 

For growth in time, w may be now expressed as 

w= (wllwc)(wr-ja). (50) 

Introduction of (49) and (50) into (47) yields 

[twr2-twr(1-b2/e2)-j(a/n)wr+ j(a/2n) (1-b2/e2) 
-a2/n2]U-[!Wr- j(a/n)]V 

+[Hl-b2
/(

2)-!wr+ j(a/n)]W+S=O, (51) 
where 

U = be {S[F N n' (Tb)][ J n' (Te)] 
Nn(Tb) G In(Te) 

V=b{S[F 

w=e{s[ G 

"~n'(Tb)]_[F ~n'(Tb)]}, 
1\ n(Tb) 1\ n(Tb) 

In'(Te)]_[G "~n'(TC)]}, 
In(Te) l .. n(Tc) 

Nn(Tb) In(Te) 
S=-----. 

Nn(Te) In(Tb) (52) 

Real and imaginary parts of (52) can be separated into 

[twr2-twr(1-b2/e2)-a2/n2]U 

-twrV+![(1-b2/c2)-wr]W+S=0 (53) 
and 

wr=!(1-b2/c2)+CV+W)/U. (54) 

Elimination of Wr finally yields the growth rate 

a=n{~-~(l- b2)~_~[~(1_ b2)_ V+W]2}!. 
U 2 (2 U 4 2 e2 U 

(55) 

Since (55) depends on k and T, values for a can be 
secured only by solving simultaneously (55) and 

(56) 

where w is approximated by wr• 

Because of the complicated dependence of (55) on T, 
this appears to be possible only with the help of com­
puters. However, in a number of special cases of 
practical interest, analytic solutions for a may be 
secured directly, as is shown below. 
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The complication in (55) is associated with the 
z-directed component of motion. In some configurations 
v. can be considered negligibly small. In that case, T 
becomes equal to jk [according to (36)J and the solu­
tion within the sheet is described by (38). All Bessel 
functions then are of the second kind, and (55) can 
give values for a directly. 

The situation simplifies further when the conducting 
. center rod is eliminated. This applies to most plasma 
and discharge configurations, and with a=O, a can be 
expressed as 

a=n{ -tCH1-b2/e2)-A -BJ2 
-!(1-b2/c2)A+AC}i, (57) 

where 

A = [I n(ke)/I n(kd)J[Kn(kd)1 n(ke)-Kn(ke)1 n(kd)J, 

B= [I n(kb )/1 n(kd)J[Kn(kb)I n(kd)- Kn(kd)I n (kd)J, 

C= [I " (kb)/I n(ke)][K" (kb)I n(ke)- Kn(ke)I ,,(kb)]. 

A computer was utilized to evaluate (57) for growth 
rates over a wide range of conditions. In Figs. 7,8, and 9 
values for a are presen ted as a function of the normalized 
inner sheet radius b/e with the outer sheet radius e held 
constant. The character of the growth dependence on 
sheet width is generally similar to that obtained for 
the flat sheet.4 In detail, the growth CUrves for the 
circular case vary substantially with proximity of 
walls (Fig. 7), with number of wavelengths around the 
circumference (Fig. 8), and with wavelength in the z 
direction (Fig. 9). In one respect, linear and circular 
cases are significantly different; in the circular con-

5x10-2 .--------...,....------....., 
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FIG. 7. Growth rates in a cylindrical sheet configuration as a 
function of the sheet thickness, with outer wall radius as parameter. 
Inner wall radius a=O, length of the cylinder l=c, order of the 
circumferential mode 1$=1. 
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FIG. 8. Growth rates in a cylindrical sheet as a function of sheet 
thickness, with order of the circumferential mode as parameter. 
Inner wall radius a=O, outer wall radius d= 1.1c, length of the 
cylinder 1=0.5c. 

figuration the wavelength cannot exceed the circumfer­
ence. Hence, each circular geometry possesses a maxi­
mum sheet width up to which growth can take place. 
Sheets of larger widths should be stable (at least in 
the limit w1'/w<<<1). The critical width at which growth 
begins is of particular interest for practical purposes 
and it is therefore presented for various geometries in 
Fig. 10. 

For configurations which are long in the z direction,JO 
the Bessel functions in (57) convert into exponential 
expressions as 

I,,(kr) -+ (kr/2)n1/n!, 

Kn(kr) -+ (2/kr)n(n-1) !/2, 
and a becomes 

a=n{ -K!(1-b2/e2)+ (1j2n)(1-[e/dJ2n) 
- (1/2n) (1- [b/dJ2n)]2 
+ (1/4n) (1-b2/e2) (1-[e/d]2n) 
- (1/4n2) (1-[b/eJ2n)(1-[e/dJ2n)}i. (58) 

An interesting property of this solution is that the 
fundamental mode for which n= 1 is generally stable. 
In this case, the second and third terms in (58) cancel 
out and a must be zero or imaginary. Physically this 
can be attributed to insufficient velocity slip resulting 
from a combination of radial dispersion of the space 
charge fields and the proportional increase in tangential 
velocity with radius for a given rotation frequency. 
As a result, the two surface waves cannot become 

10 This case has been treated recently also by R. H. Levy, 
Phys. Fluids 8, 1288 (1965). 
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synchronized or, in the limit of an infinitely removed 
wall cylinder (d= 00) can just synchronize but cannot 
produce gain. It should be added that in some configura­
tions where a conducting center conductor is present 
(ar£O), the fundamental wave mode does grow, since 
here the velocity slip can again be sufficiently large. 
Furthermore, if the fundamental mode is unstable it 
produces lateral displacements of the cylindrical sheet 
surfaces against each other. Thus, the charge sheet 
becomes deformed into a "lobsided" cylinder. 

Finally, the linear case is approached when n in 
(58) is permitted to go to infinity. Then 

where 

This leads to 

(C/d)2n~ e-2{io 

!n[l- (b2 N) ] ~ !{3t, 

n/c={3, 
o=d-c, 
t=c-b. 

a= {-![{3t-H1-e-2~t)e-21l8J2+!{3t(1-e-2Iia) 

-Hl-e-2/it)(1-e-2~8)}t (59) 

and in the limit 0 ~ 00, 

which is equivalent to Gould's expression and identical 
to the earlier derived (30). Values of a obtained from 
(59) and (60) are presented in Fig. 11. 
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!!'IG. 9. Gr~wth rates in a cylindrical sheet as a function of sheet 
thickness, With sh~et length as parameter. Inner wall radius 
a=D, outer wall radIUS d= 1.1e, circumferential order n"'" 1. 

IV. APPLICATION TO ACTUAL 
CONFIGURATIONS 

In this final section, the applicability of the described 
theoretical models to several plasma, discharge, and 
electron device configurations is discussed brieflv. One 
such configuration is the sheath of a magn~tically 
confined plasma column. At first sight it would appear 
as if the plasma sheath could not satisfy the basic 
requirement of having two free surfaces. Indeed, the 
charges composing the sheath extend from within the 
plasma up to the sheath surface. However, a second 
surface is provided by charges of opposite polarity; 
these fill the plasma up to the inner edge of the sheath 
(see Fig. 12). If the condition wp /wc«l is fulfilled for 
both charge species, the instability analysis will be 
identical to the analysis given for a single component 
charge sheet. This can be seen immediately from the 
continuity Eq. (44) where da/dt remains unchanged 
when the polarity of the charge density po and the 
direction of the surface density gradient are reversed. 

Plasma columns often are long and thin; if this is the 
case, the stability (or instability, as the case mav be) 
can be determined from (58) which applies to infi~itely 
long wavelengths in the z direction. Accordinglv it is 
expected that the fundamental mode will be ~stable. 
However, since most sheaths are quite narrow it is 
likely that some of the higher order mod;s are 
excited. 

A second configuration to be considered is the low­
pressure reflex discharge. This mode is characterized 
by a circular electron layer which lines the inside of the 
anode cylinder and which constitutes the active portion 
of the discharge. Typical configurations of this dis­
charge mode (in ion pumps, ionization gauges, and ion 
sources) are short in the z direction. Equation (57) 
gives gro~th r~tes for short sheets and would apply 
here, prOVIded It could be shown that v. is negligible. 
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FIG. 10. Critical sheet thickness as a function of the sheet length 
with wall distance as parameter. The sheets are stable above and 
unstable below the curves shown. The order of the circumferential 
mode is n=1. 
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FIG. 11. Growth rates of a linear sheet as a function of sheet width 
with distance d from a paralJel walJ as parameter. 

Typical densities in the electron layer of reflex 
discharges are of the order of 1010 particles/cm2

• The 
geometrically reduced plasma frequency in a discharge 
chamber 2 cm in diameter and 2 cm long, for example, 
can be expected to be 200 to 400 1ic/sec depending 
upon the exact shape of the electron layer. The average 
electron energy in these discharges is of the order of 
hundreds of electron volts, and, accordingly, the average 
velocity is close to 109 cm/sec. Thus, most electron 
cross the length of the discharge chamber several times 
during a single oscillation cycle. All z-directed accelera­
tion due to the wave fields should therefore be nearly 
canceled out. Hence, vZO, and (57) which applies to 
short sheet configurations may be utilized. 

In the third and last configuration to be discussed, 
the classical magnetron geometry, a circular electron 
stream of short axial length is enclosed between two 
concentric wall cylinders. 1iagnetrons may be divided 
into two classes with respect to the instability in ques­
tion. In the first, electrons are emitted from the inner 
cylinder; in the second, electrons are released from a 
separate, axially displaced cathode. The electron cloud 
of the first type extends outward from the inner elec­
trode with a density distribution which is likely to taper 
off with radius. Hence, only a single, free electronic 
surface exists and the diocotron effect should not occur. 

+--!~-- PLASMA 

SHEATH 

P 

p+ SHEATH 
SURFACE 

P.- SHEATH 
SURFACE 

FIG. 12. Cylindrical plasma configuration. The two surfaces 
required for the diocotron interaction are provided by the inner 
and outer sheath surfaces. 

In the second .case, the electrons are launched axially 
and enter the interaction region as a hollow beam. It is 
unlikely that this beam completely fills the space be­
tween both wall cylinders and, as a result, unstable 
growth is conceivable. For a detailed analysis, one has 
to resort to (55), but matters can again be simplified by 
taking T = j k. This appears to be permissible since again 
the axial transit time through the interaction region is 
short in comparison with the geometrically modified 
plasma frequency period. 

To determine whether the diocotron effect actually 
occurs in the configurations discussed above, experi­
ments have been initiated and are being carried out at 
this laboratory. Results obtained to data confirm the 
presence of the instability in all three configurations. 
A detailed account of this experimental work will be 
published in the near future. ll 
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