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electron flow in planar geometry
Ronald C. Davidson

Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 22 October 1984; accepted 3 February 1985)

A macroscopic cold-fluid model is used to investigate the quasilinear stabilization of the
diocotron instability for sheared, nonrelativistic electron flow. Planar diode geometry is assumed,
with cathode and anode located at x = 0 and x = d, respectively. The non-neutral plasma is
immersed in a strong applied magnetic field B€,, and the electrons are treated as a massless

(m—0) guiding-center fluid with flow velocity V, = —

(¢/B,)V¢ xé&,, where d/dz=01is

assumed, and the fields are electrostatic with E = — V¢. All quantities are assumed to be periodic
in the y direction with periodicity length L. The nonlinear continuity-Poisson equations are used
to obtain coupled quasilinear kinetic equations describing the self-consistent evolution of the
average density {(n, )(x,t) and spectral energy density &, (x,t) associated with the y-electric field
perturbations. Here, the average flow velocity in the y direction is Vg (x,t ) = (¢/By)(d/9x){¢ ) (x,t),
where average quantities are defined by (¥)(x,t) = S§(dy/L Wix, y, t ). Several general features of
the quasilinear evolution of the system are discussed, including a derivation of exact conservation
constraints. Typically, if the initial profile (n, ){x, ¢ = 0) corresponds to instability with ¥, (0} > 0,
the perturbations amplify, and the density profile {n, ){x,# ) readjusts in such a way as to reduce the
growth rate ¥, (¢ ) and stabilize the instability. As a specific example, the quasilinear evolution of
the diocotron instability is considered for (n, )(x,0) corresponding to a gentle density bump
superimposed on a rectangular density profile in contact with the cathode.

I. INTRODUCTION AND SUMMARY

One of the most ubiquitous instabilities in low-density
(w2, €w?) non-neutral plasmas with velocity shear is the clas-
sical diocotron instability.'~® For example, the diocotron in-
stability can occur in propagating non-neutral electron
beams and layers’~'? and in low-voltage microwave genera-
tion devices such as magnetrons, traveling wave tubes, and
ubitrons.'*'* While the linear theory of the diocotron insta-
bility has been extensively developed in the literature, there
has been little work on the nonlinear response of the system
to the amplifying field perturbations. As an attempt to delin-
eate some of the fundamental physics issues associated with
the nonlinear development of instabilities driven by velocity
shear in non-neutral plasmas, we develop here a detailed
quasilinear description of the classical diocotron instability.

The present analysis makes use of a macroscopic cold-
fluid model to describe sheared, nonrelativistic electron flow
in planar geometry (Fig. 1). The low-density non-neutral
electron plasma is immersed in a strong applied magnetic
field B,€,, and the electrons are treated as a massless (m—0),
guiding-center fluid with flow velocity V, = — cV¢ X§&,/
B,. The nonlinear continuity-Poisson equations are then
used to obtain coupled quasilinear kinetic equations that de-
scribe the self-consistent evolution of the average density
profile (n, }(x,?) and the spectral energy density associated
with the amplifying electric field perturbations. As illustrat-
ed in Fig. 1, the present analysis assumes planar diode geom-
etry, with cathode and anode located at x =0 and x =d,
respectively. However, it should be emphasized that the qua-
silinear model of the diocotron instability developed in Secs.
II-IV is quite general, and can be extended to other configu-
rations with straightforward modifications. For example,
the formalism is readily extended to the case where the con-
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ducting walls are far removed from the plasma (or absent
entirely).

It should also be pointed out that a closely related insta-
bility (often called the magnetron instability)'>~'7 occurs for
sheared non-neutral electron flow at higher density, where
space-charge effects are even stronger. This instability'>~!”
can play an important role in high-voltage diodes with appli-
cation to the generation of intense charged particle beams for
inertial confinement fusion.'® In this regard, for non-neutral
electron flow in high-voltage diodes, the analysis in Secs. I1-
IV must be extended to include relativistic and electromag-
netic effects as well as electron inertial effects.

The following is a brief outline of the paper. The analy-
sis assumes that d /dz = 0 and the fields are electrostatic with
E(x, y,t) = — V¢ (x, y,t). The cold-fluid model described in
Sec. II is based on the continuity-Poisson equations [Egs. (7)
and (8)], which describe the self-consistent nonlinear evolu-
tion of the electron density n,(x, y,z) and the electrostatic
potential @ (x, y,t ). Quantities are expressed as an average val-

d e ANODE 4y,
A x 0 2
B £, o Wty
Aéx ~ z
0 Y 4 -0
x=0-— CATHODE °

FIG. 1. Planar diode configuration with B, = B,&,, and cathode and anode
located at x = 0 and x = d, respectively.
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ue (averaged over y) plus a perturbation, e.g.,
ny(x, y,t) = (ny, Yx,t) + 8ny(x, p,t), where (n,)={sldy/
L)n,(x, y,t), (6n,) =0, and L is the periodicity length in
the y direction (Fig. 1). It is found, for example, that the
average density profile (n, )(x,t ) evolves nonlinearly accord-
ing to Eq. (14). Therefore, as the perturbations 8n, and &¢
amplify, there is a corresponding readjustment of the density
profile {(n,)(x,t}) and flow velocity Vg(x,t)={(c/B;) (8/
Jx){¢ ){x,t) in response to the instability.

In Secs. I and IV, the formalism developed in Sec. I is

used to obtain a lowest-order nonlinear (i.e., quasilinear) de-
scription of the evolution of the average density profile
(n, )(x,tl and the spectral energy density &, (x,t)
= (k|66 (x)|*/8m)exp[2 f dt 'y, (t')] in the y electric
field perturbations,8E, (x, y,t) = — (3/dy) X6¢ (x, y,t ). The
quasilinear analysis assumes that the initial density profile
(n, )(x,0) corresponds to linear instability with y, (0}> 0.
Moreover, bilinear nonlinearities (proportional to dn,8¢ )
are neglected in describing the evolution of 87, (x, y,¢). To
briefly summarize, we obtain coupled kinetic equations for
the average density profile (n, }(x,? ) and spectral energy den-
sity & (x,t) [Egs. (55) and (57)], where the diffusion coeffi-
cient D (x,t ) is defined in Eq. (56), and the complex oscillation
frequency w; + iy, is determined adiabatically in time from
the eigenvalue equation (58). General features of the quasi-
linear evolution of the system are described in Sec. IV B,
including exact conservation constraints. Typically, if the
initial profile {(n, )(x,t = 0) corresponds to instability with
%, (0)>0, the perturbations will amplify, and the density
profile {n, )(x, ) will readjust in such a way as to reduce the
growth rate y, (¢) and stabilize the instability.

As a specific example, in Sec. IV C we consider the qua-
silinear evolution of the diocotron instability for (#, )(x,0)
corresponding to a gentle density bump superimposed on a
rectangular density profile in contact with the cathode. Such
a configuration gives a weak resonant version of the dioco-
tron instability with |y, | €|w, | and growth rate given by Eq.
(81). It is shown that the system stabilizes time asymptotical-
ly by plateau formation with (3 /9x){(n, }(x,t—> )|, _ ., =0
and ¥, (t— o) = 0 [Eq. (92)], where the resonant location x;
is determined from @, — kVg(x,) = 0. Finally, for the con-
figuration with gentle density bump considered in Sec. IV C,
we also make use of the quasilinear equations to obtain an
order-of-magnitude estimate of the saturation level of the
perturbed fields.

Il. THEORETICAL MODEL

In this section, we discuss various general aspects of the
theoretical model and assumptions (Sec. II A), the nonlinear
evolution of average quantities (Sec. II B), the nonlinear evo-
lution of perturbed quantities (Sec. II C), and boundary con-
ditions at the cathode and anode (Sec. II D).

A. Theoretical model and assumptions

We consider here the nonrelativistic flow of a cold, non-
neutral pure electron plasma confined in the planar diode
configuration illustrated in Fig. 1. The cathode is located at
x = 0and the anode at x = d. The electron fluid is immersed
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in a uniform applied magnetic field B,€,. The analysis is
based on a macroscopic cold-fluid description with the fol-
lowing simplifying assumptions.

(a) All fluid and field quantities are assumed to be inde-
pendent of z{d/dz = 0) and spatially periodic in the y direc-
tion with periodicity length L. For example, the electron
density n, (x,t ) satisfies n, (x, y + L,t) = n, (x, y,t).

(b) The fields are assumed to be electrostatic with elec-
tric field

E(X,t)= —V¢(x;y,t), (l)

and magnetic field Bé, .

(c) In the present analysis the electrons are treated as a
cold, massless (m—0), guiding-center fluid with flow veloc-
ity V, = cEXé,/B,, ie.,>*

Vi(x,t) = — (c/Bo)V¢ X&,. (2)
Equivalently, Eq. (2) can be expressed as

Vol pit) = —B%%Mx,y,t),
o)

¢c 4
Vi, (x, 3t ) = — —d (x, y,t).
oy (%5 151 ) Boax¢( »t)
A cold electron fluid model with E + V, X B,¢,/c = 0 [Eq.
(2)] is valid provided the electron density is sufficiently low
and perturbations have sufficiently low frequency that®**1°
<o.. 4)

2 2
wpb <wc ’

at
Here w. =eBy/mc is the electron-cyclotron frequency,
w2, = 4mn,e*/m is the electron plasma frequency-squared,
and — eand m are the electron charge and rest mass, respec-
tively. Note from Eq. (2) that the electron flow in the present
model is incompressible with V-V, = 0.

(d) Finally, it is also assumed that the equilibrium elec-
tron flow is space-charge limited. That is, under steady-state
(@ /3t = 0) conditions, the electrostatic potential ¢(x) satis-
fies

Elx=0)= — 2

=0,
ax x=0

)
Polx =0)=0, @olx=4d)=V,,
where the anode voltage V; is related to the electron density
profile n3(x) by'*""

V, = 4me| dx” f dx’ nd(x’). (6)
0 0

Equation (6) follows from solving 3 %¢,/dx* = 4men?(x) in
the anode—cathode gap and enforcing the boundary condi-
tions in Eq. (5).

Within the context of assumptions (a}—(c), the electron
density n, (x, y,t ) and electrostatic potential ¢ (x, y,? ) are de-
termined self-consistently from Poisson’s equation and the
equation of continuity, i.e.,

F P

(8x2 + 8yz) ¢ = 4men,, (7

and
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on, p:]
o % (1, V) =0. (8)

Making use of Eq. (3) to eliminate ¥, and V,, in favor of ¢,
the continuity equation (8) can be expressed in the equivalent

form
o5 [ 5) 53] o ©

Equations (7) and (9) constitute coupled equations describing
the nonlinear evolution of the electrostatic potential ¢ (x, y,¢)
and the electron density n, (x, y,¢).

+2 (V) +
ox

B. Nonlinear evolution of average quantities

In the analysis that follows, it is convenient to express
all field and fluid quantities as an average value (averaged
over y) plus a perturbation. That is, a general quantity
Ylx, y,t) is expressed as

Yx, pt) = (¢>(x’t) + OYlx, y,t), (10)
where the average value (1) (x,t) is defined by
W)= [ dy v ) (1)

Here, L is the periodicity length in the y direction, and it
follows from Eqs. (10) and (11) that (¢} =
Averaging Poisson’s equation (7) over y, we find that

aiz;«t ) = dre(n,), (12)
X

which relates the average potential (¢ )(x,t) to the average
density (n, }(x,t ). Moreover, averaging the continuity equa-
tion (9) over y and making use of periodicity in the y direction
gives

a c 4 < a¢ )

g = 2 13

8t< m) = B, ox "o dy 13
for the evolution of <(m,). Expressing n,(x,y,?)

= (n,)x,t)+8n,(x,¥2) and  $(x,y,t)= (& Mx,t)
+ 8¢ (x, y,t ) on the right-hand side of Eq. (13), and making
use of (@ /3y){¢ ) = 0 and (6n, ) = 0, it readily follows that
Eq. (13) can be expressed in the equivalent form

a ( a >
— =——(bn, —6¢ }, 14
( ny) = B, ax " g ¢ (14)
whlch descnbes the (slow) nonlinear evolution of the average

density profile (n, )(x,? ) in response to the perturbations én,
and &¢.

C. Nonlinear evolution of perturbed quantities

In Eqgs. (7) and (9), we express the potential ¢ (x, y,¢ ) and
electron density 7, (x, y,t) as average values plus perturba-
tions, i.e.,

$(x, pt) = ($)x,t) + 8¢ (x, y,1),

(13)

ny(x, p,t) = (ny)xst) + 8ny(x, y,t),

where (¢ ) and {n, ) evolve according to Egs. (12) and (14).

Subtracting Eq. (12) from Eq. (7) gives Poisson’s equation for
the perturbed potential 8¢ (x, y,¢),
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( F | F
dx 2+ e
On the other hand, substituting Eq. (15) into the continuity
equation (9) and making use of (3 /dy){(¢ ) =0, we find

) 8¢ = 4medn,,. (16)

—(<nb> +6n,) —7073;((@ +6n,) —a¢)

+—B:a—((<nb> +om,) 2(4) +84)) =0

(17)
Defining the average EX B€, flow velocity in the y direction

Vo ot) = _—i—__—<¢><xt), (18)

and eliminating J {(n, ) /d¢ from Eq. (17) by means of Eq. (14),
it follows that Eq. (17) can be expressed in the equivalent
form

G- glieie

(ay 8 )eom)— (554 )52m)
—Ex—wnb@&ﬁ ) (19)

In Eq. (19), we have transposed all terms explicitly bilinear in
S8¢bn,, to the right-hand side.

Equations (12) and (16) for (¢ )(x, ) and 8¢ (x, y,t), and
Eqgs. (14) and (19) for {n, )(x,t) and 8n,(x, y,t ) constitute a
closed description of the nonlinear evolution of the system,
which is fully equivalent to the Poisson-continuity equations
(7) and (9). In circumstances where the initial density profile
{n, )(x,0) corresponds to linear instability, the perturbations
8¢ and Om,, amplify, and the average density profile
(n; Yx,t ) readjusts in response to the unstable field perturba-
tions according to Eq. (14).

A lowest-order quasilinear analysis (Sec. ITI)*° of Egs.
(12), (14), (16), and {19) proceeds by neglecting all bilinear
nonlinearities on the right-hand side of Eq. (19) for én,,. The
resulting equation for 8r, is then solved in conjunction with
Eq. (16) for 6¢, and the resulting expressions are substituted
into Eq. (14) to determine the quasilinear response of the
average density profile {n, )(x,? ) to the unstable field pertur-
bations.

D. Boundary conditions

For completeness, we conclude this section with a brief
discussion of the boundary conditions assumed in the pres-
ent analysis. In particular, it is assumed that there is zero net
flux of electrons at the cathode (x = 0) and at the anode
(x=d), ie, n,¥,, =0 at x =0 and x = d. Equivalently,
from Eg. (3), this condition can be expressed as
atx=0andx =4d, (20)

i g

a
E = -—¢=0,
8y¢

or (3 /3y)6¢ = Oatx = Oand x =d, since (3 /dy){¢ ) = 0.1t
then follows directly from Egs. (20) and (14) [or Eq. (13)] that
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d
g?L dx(n,) = 0. 1)

That is, however complicated the nonlinear evolution of the
average density profile {(n, ){x,t), the total number of elec-
trons in the cathode—anode region is conserved. Of course,
this is expected because of the zero-net-flux boundary condi-
tions at the cathode and anode [Eq. (20)).

Finally, assuming that space-charge limited flow is
maintained with (E, ) = — (8 /dx){¢ } = 0atx =0, it fol-
lows from Poisson’s equation (12) for (¢ ) that (¢ ) and (n, )
are related by

(B)xt)= 4‘n'eJ:dx”J:~dx’(n,, Yx't), (22)

where (¢ ) = Oatx = 0. Evaluating Eq. (22)atx = d, wefind
that the anode voltage V,(t) consistent with space-charge-
limited flow is given by

V()= 4ﬂefddx”fx"dx’(n,, Yx'e). (23)

IIl. QUASILINEAR THEORY OF DIOCOTRON
INSTABILITY
A. Quasilinear kinetic equations

With regard to Poisson’s equation (16) for §¢ and the
continuity equation (19) for én,, it is convenient to Fourier
decompose perturbed quantities with respect to their y de-
pendence. That is, we express

8¢ (x, y:t) = Y 8y (x.t Jexpliky),

k

(24)
ony(x, y,t) = ;b‘n o (X2 Jexpliky),

where k = 2wn/L, L is the periodicity length in the y direc-

tion, » is an integer, and the summation is from# = — « to
n = + . Equation (16) then gives
2
aa—6¢k — k%64, = 4mebn,,, (25)

which relates 8¢, (x,# ) and 8n,, (x,t ). At the quasilinear level
of description (see discussion at the end of Sec. II C), the
right-hand side of Eq. (19) is approximated by zero, corre-
sponding to the neglect of bilinear nonlinearities in the evo-
lution of én, . Fourier decomposing Eq. (19) then gives

(‘9 +szE)5n,,k — ke 55, 9 (ny), (26)
ad B ox

0

where [from Egs. (18) and (22)] V¢ (x,t) is given by

__dmec

Velx, 27)
InEgs. (26) and (27), the (slow) evolution of {n,, }{x,¢)is calcu-
lated self-consistently in terms of 8¢ and én, from Eq. (14),
which can be expressed in Fourier variables as

5( b>__§0——x-25nbk(_lk)6¢ ke (28)

Equations (25)(28) constitute coupled nonlinear equations
for the evolution of 8¢, , 6n,,;, and {n, ) at the quasilinear
level of description.
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To analyze Egs. (25) and (26), we consider amplifying
(¥x > 0) perturbations with time dependence of the form

56, lx,t) = 6&k(x)exp(fo dt'[ — iog(t) + 7elt) ]),
29)

Sny(x,t) = aﬁ,,k(x)exp(J;dt [ —iw (') + yilt ')]).

In Eq. (29), the growth rate ¥, (¢) and oscillation frequency
@, (t) are allowed to vary slowly in time in response to the
slow evolution of {n, ){x,¢) in Eq. (28). Substituting Eq. (29)
into Eq. (26) and solving for én,, gives
— (ke/By)b
by = —— 2P 9 (30)
Wy — kVE + l”k ax

Moreover, substituting Eq. (30) into Eq. (25), Poisson’s equa-
tion for 64, becomes

2 —

O 5y — ko, = —THLBNB O (s
ox w, —kVg +iy, x
where ¥, >0 is assumed. Note that Eqgs. (30} and (31) are
identical in form to the equations for én,, and ¢, obtained
in standard linear theory,>*" assuming perturbations about
quasisteady equilibrium profiles (n, ) and V. The only dif-
ference in the present quasilinear analysis is that (n, )(x,¢)is
allowed to vary slowly in time [Eq. (28)], which leads to a
corresponding slow (adiabatic) variation in the growth rate
71 () and oscillation frequency w, (¢ ) as calculated from the
eigenvalue equation (31).%°

Substituting Eq. (30) into Eq. (28), the average density
profile (n, }(x,t) evolves according to

J _(cV 4 ik 2|64, | d
s =) 2S o

—kVg +iy, ox
In obtaining Eq. (32), use has been made of the conjugate
symmetry
5¢_k(x’t) =5¢ Xlxt), (33)
which follows from Eq. (24) since 8¢ (x, y,t } is a real-valued
function. Consistent with Eq. (33), it follows from Eq. (29)

that the oscillation frequency w, and growth rate y,. satisfy
the symmetries

——(n b)) (32)

Y_k =% (34)

and the amplitude &;ﬁk (x) satisfies &;S k= 6& ¥. Making use
of

@ _ = — Wy,

1 - (@ — kVg) — ivs
@ —kVg + iy (@x — kVE) + 7i
and the symmetries in Eq. (34) to eliminate the odd functions

of k on the right-hand side of Eq. (32), we find that the quasi-
linear kinetic equation for {(n, ) can be expressed as

2im) =D lxs)o(n,) ), (33)
whcre the diffusion coeﬁicwnt D (x,t) is defined by
Dixt) = ( c )2z k2|54, ’227’k , (36)
B,) & (0 —kVeP + 72
Ronald C. Davidson 1940



and ¥, > 0is assumed. Moreover, from Eqg. (29), the quantity
|66+ |* evolves according to

a
El&ﬁk |* = 2716, |*. (37)

To summarize, the quasilinear evolution of {(»,) and
|66+ | is described by the coupled kinetic equations (35) and
{37), where the diffusion coefficient D is defined in Eq. {36).
Moreover, the growth rate 7, (¢) and oscillation frequency
w; (¢ )are determined adiabatically from the linear eigenvalue
equation (31) with (n, ) changing slowly in time according to
the kinetic equation (35). Typically, if the initial profile
(n, Y{x,t = 0) corresponds to instability with y, (0)>0, the
perturbations will amplify [Eq. (37)], and the density profile
(n, )(x,t ) will readjust [Eq. (35)] in such a way as to reduce
the growth rate ¥, (¢) and stabilize the instability [Eqgs. (31)
and (37)].

For future reference, we consider Eqs. (36) and (37) in
the limit of a continuous k spectrum with

v 00l 2|‘S¢k = [k g, (38)

k

Here, &, = k %8¢, |*/87 is the spectral energy density asso-
ciated with the 6E, electric field perturbations. In the con-
tinuum limit, Egs. (36) and (37) become

8arc? Jdk Ve &
B? (@

K —kVeP+ 7
2 & =28 (40)
at
where 7, is the linear growth rate determined from Eq. (31).

D(x,t)= (39)

and

B. Quasilinear growth rate

The growth rate ¥, and oscillation frequency w, are
determined from the eigenvalue equation (31). In terms of
the amplitude ¢S¢k (x) [Eq. (29)], Eqg. (31) can be expressed as
& k¢ dme® 3

254, — k¢, = — =
ox? b b —kVg + iy, mo, dx (),
(41)

wherew, = eB,/mc is the electron-cyclotron frequency. For
specified {(n, ) and corresponding self-consistent flow veloc-
ity ¥z [Eq. (27)], Eq. (41) can be solved for the eigenfunction
8¢, and complex eigenfrequency @, + iy, . This has been
done in the literature for a variety of unstable profiles.>*>

Equation (41) can also be used to derive an effective
dispersion relation for @, -+ i¥; in circumstances where the
functional form of 5¢k (x) is known. Multiplying Eq. (41) by
5¢ = 6¢ % integrating from x = 0 to x = d, and making
use of 6¢k x=0)=0=56¢,(x =d) [Eq. (20)] give

0= e(k’a)k+l7’k)-—r ( +k2|6$k|2

k |5¢k|2 dme?
—(n,) ).
—kVg + iy, mo, Bx

(42)
For specified 5$k {x), Eq. (42) plays the role of a dispersion
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relation that determines w, + /7, . Setting real and imagi-
nary parts of Eq. (42) separately equal to zero gives

a 12
O=Ree=c¢, =rdx('——d¢k
o Ix

+k2|5$k|2

_ ko Vo8 tre* 5, b>) 43)
(@ —kVeP + 72 mo, Ox

and

O=Ime

e 41re? 84|

_ei_kykmwcfdx( e ML

Equation (44) can be used to prove the well-known suffi-
cient condition for stability. That is, if*’

(%(n,, )<0 (45)

over the interval 0 <x <d, then Eq. (41) does not support
unstable solutions with ¢, > 0. That is, ¥, <0and the pertur-
bations are damped or purely oscillatory for monotonic de-
creasing density profiles of the form illustrated in Fig. 2(a).
Equivalently, a necessary condition for instability (y, >0) is
that (3 /9x)(n, ) or (3%/3x*)Vy [Eqgs. (12) and (18)] change
sign on the interval 0 < x < d. Therefore, density profiles that
are instantaneously of the form illustrated in Figs. 2(b)-2(d)
are expected to yield the diocotron instability driven by a
shear in the velocity profile V. Hollow density profiles
[Figs. 2(b) and 2(c)] tend to give strong instability, whereas
profiles with a gentle density bump [Fig. 2(d)] give a weak
resonant instability characterized by relatively small growth
rate 7 .+

For the case of weak resonant diocotron instability [Fig.
2(d)] characterized by |y, | €|, |, the effective dispersion re-
lation (42) can be further simplified. For small y,, we ap-
proximate

0 = elkw, + i)

€,
=€, (k@) + i(€i(k9wk} + Vi 2 ) + e (46)
dw,

and

lim L P b, — kVy),
N0, @y — kVg + iy, wk—kVE

(47)

where P denotes Cauchy principal value. Substituting Egs.
(42) and (47) into Eq. (46) gives

~ 2 ~
o=€r(k,wk)=rdx(‘_‘7_5¢k + k2|58, |
0 8x
_ kP54 4
1664 |° 4me? b)) (48)
a, —kVg mo, &x
and
- __ &
Ve = = Ge.om,
d N a
- fdx|6¢k[25(wk — kVg)——(n,)
o A dx
|66 ’P 4 )"
X dx ——1251 = . 49
(I *Toc— KV a5 ®
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FIG. 2. Plot of {n,) vs x for several density profiles with different stability properties. Solutions to eigenvalue equation (41) correspond to: (a) stable
oscillations; (b) and (c) strong diocotron instability; and (d) weak resonant diocotron instability.

Denoting by x = x, (k ) the resonant layer where
o, — kVg(x,) =0, (50)

it follows from Eq. (49) that the growth rate ¥, can be ex-
pressed as*®

_ |‘S‘;5k|2 a )
e = ”(|kaVE/ax| ax ™)

e 8 )
(-2 L) e

For d¢, /0w, <0, and therefore (-+)~' >0 in Eq. (51), it fol-
lows from the above expression that 7, > 0 (corresponding
to instability) whenever the resonant layer x, falls in the re-
gion of positive density slope, i.e.,

d
I (n,) o

>0, (52)

1942 Phys. Fluids, Vol. 28, No. 6, June 1985

asillustrated in Fig. 2(d). In circumstances where the nonlin-
ear response of the system described by Eqgs. (35) and (37) is
such that the density profile flattens in the vicinity of x = x,
with (9 /9x)(n, }|. -, —0, it follows from Eq. (51) that
¥, —0 corresponding to marginal stability and saturation of
the wave spectrum [Eq. (40)]. The quasilinear stabilization of
the resonant diocotron instability driven by a gentle density
bump is discussed in Sec. IV C.

For future reference and use in Sec. IV C, here we sum-
marize the limiting forms of the diffusion coefficient D [Eq.
(39)] for the case of weak resonant diocotron instability. In
particular, taking y, —0_ in Eq. (39) in the resonant region
of x space where w, — k¥ =0, it follows that D can be
approximated by

817'20

D (xt)= fdk & Olwr — kVi). (53)
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On the other hand, in the nonresonant region of x space
where (@, — kVg)*>73, it follows from Eq. (39) that D can
be approximated by

2 &
D,,,(x,t)=81rc fdk 13" .
B3 (@x — kVE)

The approximate forms of D, and D,, in Egs. (53) and (54}
are calculated to the same accuracy as Egs. (48) and (51) for
@, and y;.

(54)

V. STABILIZATION PROCESS

In this section, we make use of the formalism developed
in Sec. III to describe several features of the quasilinear sta-
bilization process, both in the general case (Sec. IV B) and in
circumstances corresponding to weak resonant diocotron in-
stability (Sec. IV C).

A. Summary of quasilinear equations

For convenient reference, here we summarize in one
location the full set of equations used in the quasilinear de-
scription of the diocotron instability derived in Sec. III. In
particular, the kinetic equation describing the evolution of
the average density profile (n, )(x,) is given by [Eq. (35)]

d a ( a )

= =D — , 55

o (ny) Ix Ix (ny) (55)
where the diffusion coefficient D (x,t ) is defined by [Eq. (39)]

Y&k
o, —kVe) + 7%
for ¥, >0, and the spectral energy density &, evolves ac-
cording to [Eq. {40)]
2 8. =55 (57)
In Eqgs. (55)—(57), the spectral energy density is defined by

& = k2|8, /8 = (k|6 (x)|*/8m)

X exp(ZJ dt’ y,lt ’)),
0

where the eigenfunction &}k {x) and the complex oscillation
frequency w, + iy, are determined from the eigenvalue
equation [Eq. (41)]

2 N N 2
D Sy — k= ———te 7€ D
Ix @, — kVg + iy, mo, dx

(58)

Moreover, the average flow velocity Vi (x,t) = {c/By)d/
x){(¢ ) in Eqgs. (56) and (58) is defined by [Eq. (27)]

(56)

2
Dixt)= 8;’5 Jdk (

0

Vi = 4”“f dx'{n, Y(x',t ), (59)
By, Jo

where (n, ) evolves according to Eq. (55). Note from Eq. (58)

that @, + iy, varies adiabatically in time in response to the

slow evolution of {n, } and V. Making use of Eq. (20), the

eigenvalue equation (58) is to be solved subject to the bound-

ary conditions

8, =0, atx=0O0andx=d. (60)
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Correspondingly, the spectral energy density satisfies

& . = Oat the cathode (x = 0) and at the anode (x = d ), and
it follows from Eq. (56) that

D=0, atx=0andx=d. (61)

In the limiting case of weak resonant diocotron instabil-
ity driven by a gentle density bump [Fig. 2(d)], or in circum-
stances where a more general initial profile for (n,) [Fig.
2(b), say] evolves according to Eqgs. (55}(59) to a regime
characterized by weak resonant instability, it follows from
the analysis in Sec. III B that (n, ) and &, evolve according
to Eqgs. (55) and (57). Here the diffusion coefficient D is ap-
proximated by [Egs. (53) and (54)]

87%¢c?
B3

forwk - kVE = O,

D, =

fdk % Slw, — kVy),

D~

(62)

2 &

D, =¥ far Tk,
B3 (0 — K VE)Z

for (w, — kV&)/> 7.
Explicit expressions for the eigenfunction 84, , the growth
rate ¥, , and the oscillation frequency w, appearing in Eq.
(62) must generally be determined from the eigenvalue equa-
tion (58). However, for specified 8¢, , it also follows from the
analysis in Sec. III B that @, and ¥, can be estimated from
Egs. (48) and (51), respectively, for weak resonant instability.

B. General features of the stabilization process

Consider the smooth initial density profile
(n, Y(x,t = 0) corresponding to instability illustrated by the
solid curve in Fig. 3(a). Assume ¥, (t = 0) >0 and nonzero
initial excitation of |54, |*. In Fig. 3(a), the density maximum
at t = 0 is located at x = x,,,. Moreover, from Eq. (59) and
Fig. 3(a), the corresponding initial flow velocity profile
Vg (x,t = 0) has the form illustrated by the solid curve in Fig.
3(b), with inflection point [V j(x,t =0)=0] located at
X=X,

Several important features of the general quasilinear
development of the system follow directly from Eqgs. (55}
(61).

(@) Number conservation: First, number conservation
readily follows upon integrating Eq. (55)fromx = Otox = d
and enforcing Eq. (61), i.e.,

d
— | dx{n,)(x,t)=0. 63
7 (ny)x,t) (63)
[See also Eq. (21).]

(b) Conservation of average x location: Second, the den-
sity-weighted, average x location of the electrons is also con-

served, i.e.,
9
EJ(; dx x{(n,)x,t)=0. (64)

The proof of Eq. (64) proceeds as follows. Multiplying Eq.
(55) by x, integrating from x = 0 to x = d, and enforcing Eq.
{61) gives
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FIG. 3. Quasilinear response of (a) average density profile {n, }{x,?) and (b)
average flow velocity Vg (x,?), in response to the amplifying field perturba-
tions [Eqgs. (55)(59) and Eqgs. (69)-(72)).

a (* _ 3
Ej;dxx(n,,) = —J:deg (n,). (65)

Multiplying the eigenvalue equation (31) by (c¢/
4meBy)kb¢ _ ., integrating from x =0 to x = d, and inte-
grating over k, we obtain

2|6¢k|2

f ( )Jd wk—kVE+tykE< »?
= —(wZBO)J:de’dkkOa—xw" 2+k2|5¢"('2‘)

The right-hand side of Eq. (66) vanishes identically since the
integrand is an odd function of k. Equation (66) readily gives

_fdx( )fd wk—zkli‘i{m )
- _ f deE(nb) —0, (67)

which completes the proof of Eq. (64). Equation (64)is signif-
icant in that the density-weighted average x location of the
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electrons is conserved, however complicated the quasilinear
evolution of the system. That is, combining Egs. (63) and
(64), we obtain

d
%= Jo dxx(ny) _ const. (68)

Sodx(n,)
(c) Profile evolution: We consider Egs. (55) and {56) for
7% >0, and integrate Eq. (55) from x = 0 to an arbitrary
point x(0 < x <d ). Enforcing the boundary condition D =0
at x = 0 [Eq. (61}}, we obtain

2 [ astn, )t =D L), (©9)
or equivalently, from Eq. (59),

9 Vglx,t)=D —‘iVE (70)

at dx*

Comparing with Fig. 3, it follows from Egs. (69) and (70) that

9 f dx(n,)| 20, forxsx,, (71)
at Jo t=0

and
a
— Vg 20, forxsx,,, (72)
at t=0

where x = x,, corresponds to the density maximum in Fig.
3. That is, at a subsequent time #,> O, the profiles for {n, )
and V have evolved to the form illustrated by the dashed
curves in Fig. 3, corresponding to a weakening of the density
gradients, and a partial fill-in of the density depression.
Therefore, during the initial stages of instability, the quasi-
linear response of the system is in the direction of stabiliza-
tion and reducing the growth rate [Eqs. (57) and (58)].

C. Resonant diocotron instability

As a specific example, we now consider the quasilinear
evolution of the diocotron instability for the configuration
illustrated in Fig. 4. This corresponds to a gentle density
bump superimposed on the rectangular profile

n, =const., O<x<b,
(ny) = (73)
0, b<x<d.
Such a configuration gives the weak resonant version*® of
the diocotron instability discussed in Sec. III B, and the ap-
propriate quasilinear equations describing the evolution of
the system are given by Eqgs. (55), (57), and (58), with diffu-
sion coefficient D approximated by Eq. (62).

(a) Real oscillation frequency: For the configuration
with gentle density bump illustrated in Fig. 4, the real fre-
quency @, and eigenfunction 5¢ « [x) are calculated to good
accuracy from the eigenvalue equation (58), approximating
the density profile by the rectangular form in Eq. (73). The
eigenvalue equation (58) becomes

—kﬁ%— 8x — b), (74)

Wy — KV

where w,; = @2,/0, = 4wh,ec/By, and the right-hand side
of Eq. (74) corresponds to a surface-charge perturbation at
x = b. Referring to Fig. 4, the solutions to Eq. (74) in region I

3 . ~
§6¢k —k25¢k =
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FIG. 4. Initial density profile (n, )(x,0) corresponding to weak resonant
diocotron instability. The resonant region of x space satisfying
we — kVg(x,) = O[Eq. (83}]) covers therange b */d~x, <x, <x,~b [Eq.
(86)].

(0 <x < b)and region I (b < x < d ) that arecontinuous at the
surface (x = b ) of the electron layer are
561 =4, sinhkx, O<x<b,

(75)
sinh k (d — x)
sinh k{d —b)’
where &,‘ is the amplitude (independent of x). Note from Eq.
(75) thatd¢ § (x = 0) = 0 = 8¢ Y(x = d ) [Eq. (60)] at the cath-
ode and anode. To determine w, , we integrate the eigenvalue

equation across the surfaceatx = b fromx_ =b(1 —§)to
x, = b(1 4 8) and take the limit 6—0, . This gives

9 o d o k[88L]._s@a
o] [ -2k
[3x L) W e ¢‘°x=b w, —kVglx=b)

5 = @, sinh kb b<x<d,

(76)
Substituting Eq. (75) into Eq. (76) readily gives
— 3, sinh kb coshk(d—b)
, sinh k(d ~ b)
N inh kb
— 3y cosh kb = 4% S (77)

@, — kVglx =b)
Solving Eq. (77) for the real oscillation frequency w, , we find

0 —kVgx=b)= — o :
coth kb + coth k (d — b)
(78)
From Eqgs. (59) and (73), it follows that Vz{x = b)in Eq. {78)
can be expressed as Vy(x=0b)=w,b, where
Wy = @2, /0, = 4rhyec/B,.
In the short-wavelength limit, it follows from Eq. {78)
that @, can be approximated by

wp =kVglx =b)(1— 1/2kb), (79)
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forkb, k (d — b )» 1. Moreover, for long wavelengths with kb,
k(d — b)«1, Eq. (78) gives

w =kVglx=05)b/d). (80)
A typical plot of w,, vs kb is shown in Fig. 5 ford /b = 2.

(b ) Quasilinear growth rate: Referring to Fig. 4, the reso-
nant growth rate 7, can be estimated from Eq. (51). Making
use of Vg = wyx for 0 <x < b [Eq. (59)], and evaluating the
()~ factor in Eq. (51) with (3 /dx){n, ) approximated by
— 7,8 {x — b), we obtain from Eq. (51)

[0 ~ kVe(b)]2168%)icx, b &

T kVob)  166L12_, %:b;(nb)l,,:xs.
(81)

InEq. (81), kVg(b) = (kb )w, and w,, is determined from Eq.
(78). Moreover, it follows from Eq. (75) that

64 L1 ~x, _ sinh® kx,

64L2_,  sinh?kb’
and the resonant location x = x,(k) is determined from
wy, — kVg(x,}) = 0[Eq. (50)]. Note from Eq. (81) that ¥, >0
(corresponding to instability) whenever x; falls in the region
of positive density slope in Fig. 4.

Combining Eq. (78) with w, — kVg(x,) = 0 gives for
xS (k )’

k(b —x,)=[cothkb + cothk{d—b)] . (83)
In the limits of short and long wavelengths, Eq. (83) reduces
to the approximate results

x,/b=(1—1/2kb),
and

x,/b=0b/d, forkb,k(d—b)<l. (85)
Therefore, from Eqs. (83)-(85), the resonant region of x space
covers the range (see also Fig. 4)

b /d~x, <x, <X,=b, {86)
with the upper limit (x,, ) in Eq. (86) corresponding to short
wavelengths, and the lower limit (x,, ) corresponding to long

(82)

for kb, k (d — b)>1, (84)

1.0

!

wy Q8

k Vg (b) = .
}_ -
L L. L

d 2
F
o} | | { 1

(o] | 2 3 4q 5

kb —»

FIG. 5. Plot of normalized frequency w, /kV (b} vs kb obtained from Eq.
(78)ford /b =2.
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wavelengths. Referring to Eq. (86) and Fig. 4, we find for b /
= 1/2 (for example) that x; covers the range 1/2Sx,/
bs1.
Finally, it readily follows that the nonresonant region
of x space satisfying [w, — k¥ (x)]*>7: corresponds to

2
(x—xs)> Vi ’ 87)
b k*V%(b)
where Vi (b) = w, b, and ¥, and x, are defined in Egs. (81)
and (83).

(c) Quasilinear stabilization: In the resonant region of x
space satisfying w, — k¥z(x) = 0, the quasilinear diffusion
equation (55) for (n, ) can be expressed as

ad 1%) J
=) = E(D’ 2 >), (88)

where the resonant diffusion coefficient D, is given by [Eq.
(62)]

D, = 16”26 f dk & Sle, — kV,)
N
_ 161rzc & rlxt) ] ' (89)
B2 |aco,,/ak— VEI k= kx)

In Eq. (89), k,(x) solves the resonance condition w,
— k,Vg(x) =0, where Vi(x) =w,x and w, is defined in
Eq. (78). Substituting Eq. (78) into w, = k, ¥g(x) gives the
transcendental equation for &, (x):

kb [coth kb + coshk (d—b)] =b/b—x). (90)

The spectral energy density &, in Eq. (89) of course evolves
accordingto (@ /0t )€, =2y, &, [Eq.(57)], where the linear
growth rate ¥, (t) is given in terms of (1, ) by Eq. (81).

An H theorem describing the stabilization process in
the resonant region of x space (x,; Sx Sx,, ) follows readily
from Egs. (88) and (89). Multiplying Eq. (88) by (», ) and
integrating over x gives

_fdx<,,b>2 ~fde( (nb>)2

_ _ lore fdxf dkblw, — kVy)
B3 0

x$k<x,t)(7f;<n,,>)2<o. 1)

Analogous to the quasilinear stabilization of the one-dimen-
sional bump-in-tail instability in velocity space,?® the time-
asymptotic (t— o) solution inferred from Eq. (91) necessar-
ily satisfies

=0 (92)

X=X

—aa;(nb)(x,t—»oo)

in the resonant region (x,; $x $Xx,, ). We conclude from Egs.
(81) and (92) that
Vxlt—0) =0, (93)
corresponding to plateau formation and quasilinear stabili-
zation of the instability. From Eq. (93} and (d/9¢)%,
= 2y, &, we conclude that the spectral energy density sat-
urates at a steady asymptotic level &, (x, «).
(d) Estimate of saturation level: To obtain a detailed esti-
mate of the saturation level of the instability, it is generally
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necessary to solve the coupled quasilinear Kinetic equations
for (n,) and &, for specified initial profile (n, )(x,0). To
obtain a simple order-of-magnitude estimate, however, it is
adequate to make use of the conservation relation satisfied
by fdxx(n,) in the resonant region. Multiplying (3/
ot)(n,) = (3 /3x)(D, d{n, )/dx) by x and integrating over x
for the resonant particles gives

(& o)

2 ax
Sﬂ’zch. k xs’t)
- dk
52 ) v o Pl -

where x (k ) solves w, — kVy(x,) = O[Eq. (83)], and use has
been made of Vi (x) = w,x and the definition of D, in Eq.
(62). Making use of Eq. (81) to eliminate (3 /dx){n, )|, _ . , we
can express Eq. (94) as

4rc*h
(iJ‘dxx(nb)) = — ﬂcznb Jdk 2y, € i (bjt) .
ar ’ B; [, —kVe(b)]

drc’h, 3 & (bt)
BZ ot [k — kVE(0)]?’
(95)
where use has been made of (3/0¢t)%, =2y, %, and
Frlx,,t) =8 (b,t)6L 2. /|68 L2 _ ,,and thetimevari-
ation of w, has been neglected in Eq. (95). Integrating Eq.
(95) with respect to time gives the conservation relation

A ( dx x{n, ))
; & (bst) ), 96)

dmch
_ ﬂcn,,A(J‘dk
B} [@f — kVE(b)]2

where AF denotes F (t) — F(t = 0). Asapoint of consistency,
if we make use of Eq. (62) for D,,,. and the approximate form
of (n,) given in Eq. (73) in evaluating § dx D,,(3/3x){n, )
for the nonresonant particles, then it is straightforward to
show

(2 faxsin)) +(Z faxsin)) =0 w9

which is consistent with the conservation law (64) proved in
Sec. IV B in the general case.

Equation (96) can be used to estimate the t— o satura-
tion level of the perturbed fields. For present purposes, we
make use of Eq. (78) to estimate [, — AV (b)] *~1/w} in
the integrand in Eq. (96), and denote the change in perturbed
field energy density by A& (t)=fdk &, (bt)— fdk
X & ;. (6,0). Equation (96) then gives the order-of-magnitude
estimate

A4 de x{n, ))r

As a simple model to estimate the left-hand side of Eq. (98),
we assume that (n,) initially has the linear profile
f, +(dn,/4,)[x —(b—A4,/2)] over the interval
b— A4, <x<batt =0, and the flat profile /1, as #—> 0. That
is, the initial density gradient in the bump region is assumed

41rc n,,

A% ;. (98)
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to be (3 /9x){n, ) = An,/A,, where 4, is the width of the
density bump. Equation (98) then gives
A A 2.2 B2
AF f(o0)mt 0o 2504 20
6 7, ¢ 87
1 4n, A} Vi(b) Bj

6 A, b & 8«
A4n, 4% (E (b))
_1 A"b __: (E, (b)) . (99)
6 n, b 87
Here, w, =@2,/w, = 4rh,ec/B;, Vglb)=w;b, and
(E (b)) = —4mefi,b for the configuration considered
here.

Equation (99) gives a useful order-of-magnitude esti-
mate for the saturation level of the perturbed field for an
initially unstable configuration characterized by a small den-
sity bump (4n,) with spatial width 4,. Assuming that the
saturated field level (-— o0 ) is much larger than the initial
field level, then A& (oo)~fdk &, (b,0). Moreover
§dk &, (b,c0) = § dk k*|5¢,(b,0)|*/8m = (SE2(b,0))/
8. Therefore, Eq. (99) reduces to

2 1 A} An,

(BE2(b,0)) = 657 7,
It is clear from Eq. (100) that the perturbed fields can satu-
rate at a substantial level, even for a moderately small den-
sity bump as measured by 4n, /7, .

(E. (b)) (100)

V. CONCLUSIONS

In the present analysis, a macroscopic cold-fluid model
was used to investigate the quasilinear stabilization of the
diocotron instability for sheared, nonrelativistic electron
flow in a planar diode (Fig. 1). The nonneutral electron plas-
ma was treated as a massless (m—0) guiding-center fluid
with flow velocity V, = — {¢/B,)V¢ X &, (Sec. II), and the
continuity-Poisson equations were used to obtain coupled
quasilinear kinetic equations describing the self-consistent
evolution of the average density {n, )(x, ) and spectral ener-
gy density & (x,t ) associated with the y electric field pertur-
bations (Sec. III). Several general features of the quasilinear
evolution of the system were discussed in Sec. IV including a
derivation of exact conservation constraints. Typically, if
the initial profile (#n,)(x,t =0) corresponds to instability
with ¥, (0) > 0, the perturbations amplify [Eq. (57)], and the
density profile (n, )(x,¢) readjusts [Eq. (55)] in such a way as
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to reduce the growth rate ¥, (¢) and stabilize the instability
[Eqgs. (57) and (58)].

Finally, as a specific example, in Sec. IV C we consid-
ered the quasilinear evolution of the diocotron instability for
(n, )(x,0) corresponding to a gentle density bump superim-
posed on a rectangular density profile in contact with the
cathode (Fig. 4). Such a configuration gives a weak version of
the diocotron instability. It was shown that the system stabi-
lizes time asymptotically by plateau formation [Egs. (92) and
(93)] in the resonant region of x space where
@y — kVg(x) = 0. Making use of the quasilinear equations
to obtain an order-of-magnitude estimate [Eq. (100)] of the
saturation level of the perturbed fields, it was shown
that (SE2(b,0))/87=(1/6)4,/b)(An,/f,){E,(b))*/8m,
where An, and 4, are the characteristic height and width,
respectively, of the density bump (Fig. 4).
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