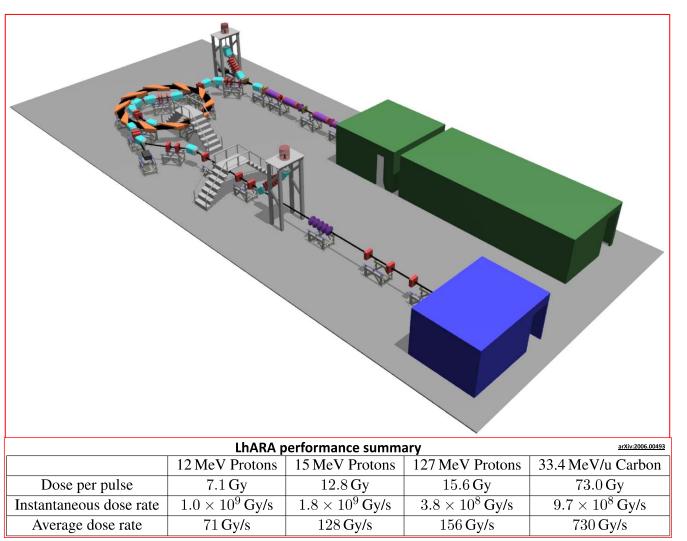

THE PATRICK G JOHNSTON CENTRE FOR CANCER RESEARCH

Biology of Heavy lons

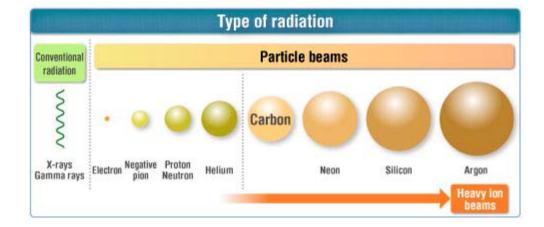
Kevin M. Prise

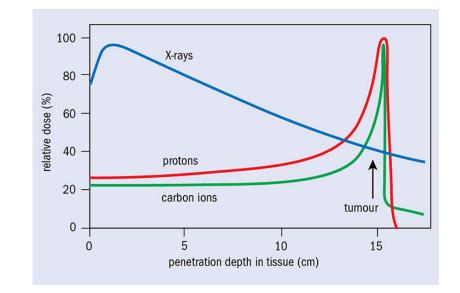
LhARA external review 26th October, 2022


Outline

- Heavy ion radiobiology
- Proof of concept studies with lasers produced ion beams
- Future potential

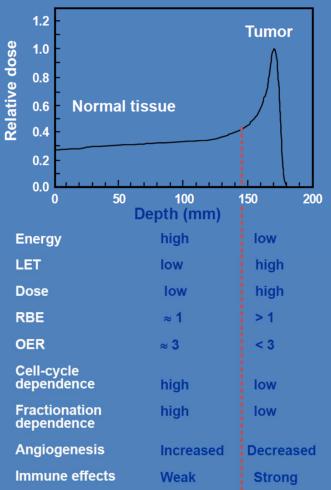
LhARA – Biology Capabilities

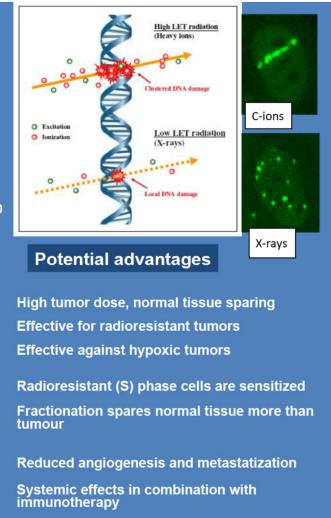

- Flexible source for *in* vitro and *in vivo* radiobiology
- Range of energies and ion species possible
- Flexibility in pulse delivery over space and time
- Cost effective alternative to synchrotron based facilities



Heavy ions

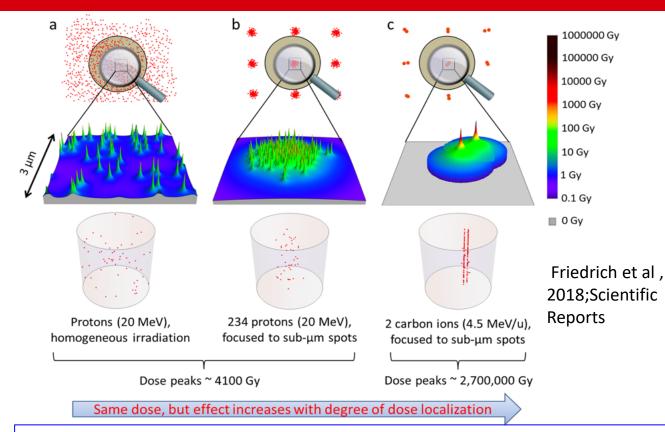
- A range of ions can be used for cancer therapy
- Alongside protons, carbon ions are commonly used
- Advantages include lower entrance dose and increased LET (and Relative Biological Effectiveness)

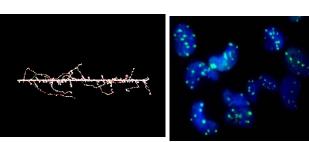




Heavy ion radiobiological advantages

- A range of factors give ions radiobiological advantages
- LhARA will allow systematic testing of these in advanced biology models



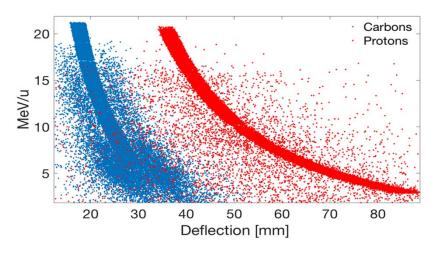

Tinganelli and Durante, 2022, Cancers 12, 3022.

Spatial patterns – sub micron

10 MeV Carbon ions track lateral view 10 MeV/n Carbon ion induced DNA Damage in GBM stem Cells

Due to the highly localized dose effects of carbon ions they are effective for radiotherapy , e.g. only 2 carbon ions deposit 700 times more dose than homogeneous or 234 protons at sub-µm scale

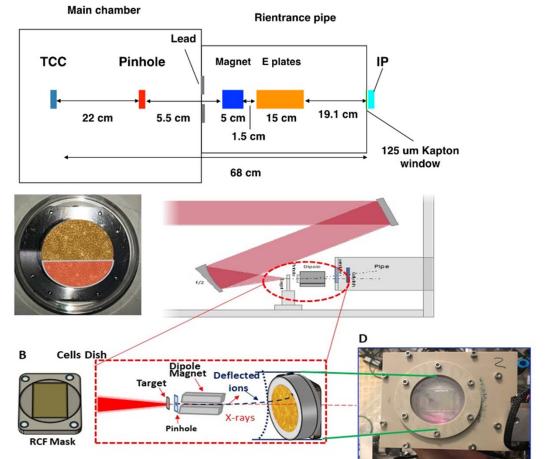
LhARA will be a key tool to probe subcellular dose distributions of ions



Can lasers produce heavy ion beams for radiobiology?

Proof of concept - Laser produced carbon ions - setup

 Using TNSA, carbon ions of up to 30 MeV/n have been accelerated using the STFC Gemini laser



McIlvenny *et al.*, 2021 *Phys Rev Lett*, **127**, 194801. Milluzzo *et al.*, 2020 *J Phys Conf Ser* **1596**, 012038. Chaudhary *et al.*, submitted.

THE PATRICK G JOHNSTON CENTRE FOR CANCER RESEARCH

Cells Irradiation Chamber Assembly

Proof of concept - Laser produced carbon ions – cell irradiations

30

53BP1 foci /Cell/Gy 0 12 05 55

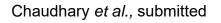
5

n

Control

(A)

C ions


X-rays

Control

0.5 hr

1 hr

- Single pulse 1 Gy exposures
- 2.5 x 10⁹ Gy/s
- 10 MeV/n carbon ions (160 keV/µm)
- Radioresistant GBM stem cells
- Significantly reduced DSB repair
- Increased 53BP1 foci size

THE PATRICK G JOHNSTON CENTRE FOR CANCER RESEARCH

0.0

100 -

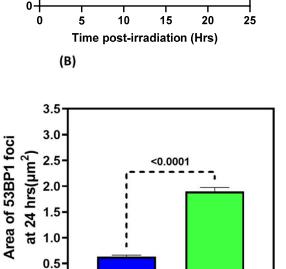
80.

60

40

20·

% of unrepaired DNA DSB


225 kVp X-rays

6hr

24 hrs

24 hr

10 MeV/n C ions

X-rays

- 225 kVp X-rays

10 MeV/n C ion

C ions

Is their novel radiobiology at ultrahigh dose-rate?

Dose-rate effects

CANCER RESEARCH

Proof of concept of ultra-high dose-rate effects

- 3D GBM neurospheres more • radioresistant than 2D to Xrays
- Similar response to ٠ conventional protons (30 MeV, 4 Gy/min)
- 35 MeV laser accelerated protons at 1 x 10^{10} Gy/s
- UHDR reduced the ٠ radioresistance of 3D neurospheres
- Surviving Fraction [-] Dose-dependent changes, ٠ likely that oxygen depletion plays a role

Odlozilik, Chaudhary, McMurray, Borghesi and Prise: in preparation

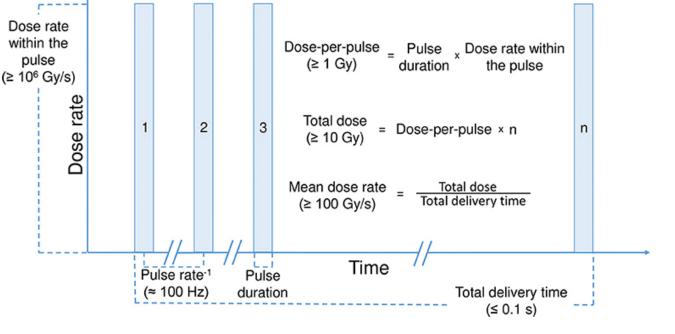
0.1

0.01-

0.001

THE PATRICK G JOHNSTON **CENTRE FOR CANCER RESEARCH**

2D monolayers X-rays Surviving Fraction [-] 0.1 **3D** neurospheres 0.01 3D 2D 200 µm 0.00 10 2 g Dose [Gy] **UHDR Protons Conventional Protons** Surviving Fraction [-] 0.1-0.01-3D 3D 2D 2D 0.00 9 10 2 8 10 Dose [Gy] Dose [Gy]

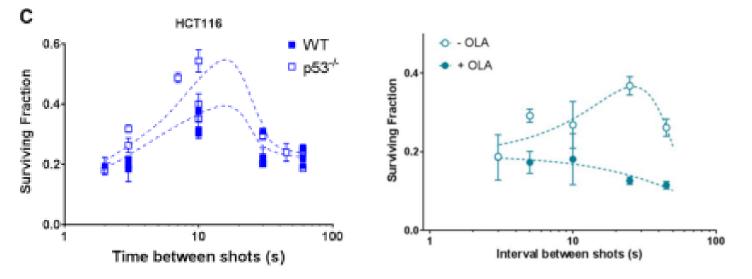

Dose-rate - Key Physical Parameters

- LhARA will allow systematic testing of dose-delivery patterns
- **Total Dose**
- Dose per pulse
- Frequency of pulses
- **Overall** exposure time
- Radiation type

pulse

Pulsed RT Delivery

From Wilson et al., 2017 Front Oncol, 9, 1563.


Temporal delivery of single shot laser driven ions can change the biological response of cells

LOA Group, Bayart *et al*, Scientific Reports, 2019 **Dose rate**: 1.5 x 10 ⁸ Gy/sec protons Energy range: 1-6 MeV Dose delivery mode: **multiple pulses** Time interval between pulses : 3-60 seconds

OPENFast dose fractionation using
ultra-short laser accelerated
proton pulses can increase cancer2019cell mortality, which relies on
functional PARP1 protein

E. Bayart¹⁰, A. Flacco¹, O. Delmas¹, L. Pommarel^{1,2}, D. Levy^{1,3}, M. Cavallone¹, F. Megnin-Chanet^{4,5}, E. Deutsch⁰₀ ⁴ & V. Malka^{1,3}

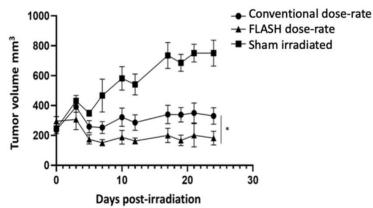
Cell survival of cancer cell lines was found dependent on the bunch repetition rate of laser driven protons – **Biology plays a role**

Received: 25 February 2019

Accepted: 28 June 2019 Published online: 12 July 2019

Novel biology with heavy ions and high dose-rate

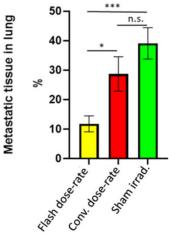
- Studies now reporting carbon ion exposures at ~100 Gy/s, 240 MeV/n carbon, 15 keV/µm
- Improved normal tissue sparing
- Increased tumour control
- Increased control of distal metastasis
- LhARA will be able to do similar studies at much higher doserates


Radiotherapy and Oncology 175 (2022) 185-190

Original Article

FLASH with carbon ions: Tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model

Walter Tinganelli^a, Uli Weber^a, Anggraeini Puspitasari^a, Palma Simoniello^b, Amir Abdollahi^c, Julius Oppermann^a, Christoph Schuy^a, Felix Horst^a, Alexander Helm^a, Claudia Fournier^a, Marco Durante^{a,d,*}



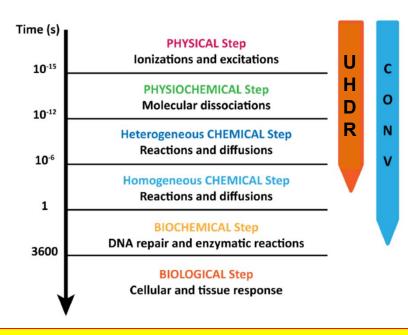
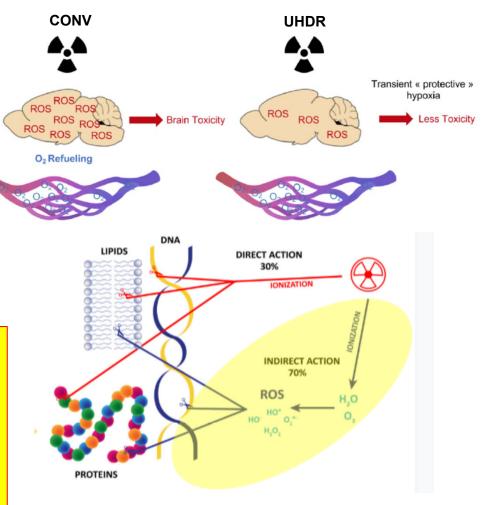

Fig. 6. Quantification of metastasis in lung shown in Fig. 5. The difference between

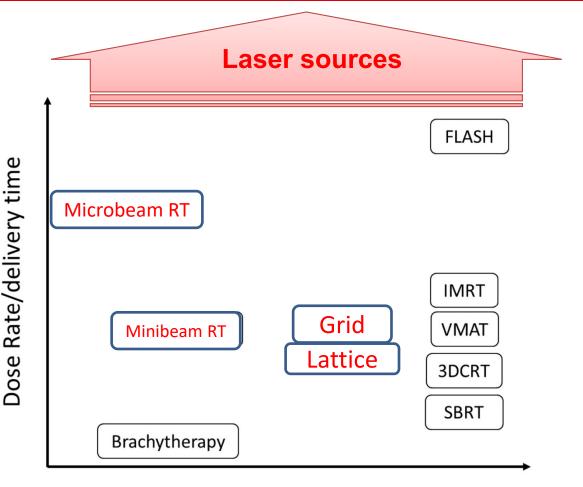
Fig. 2. Tumor growth of the osteosarcoma after irradiation with heavy ions. Ultrahigh dose rate ¹²C-ion iradiation produces a statistically significantly reduction in tumor volume compared to conventional dose rate.


QUEEN'STHE PATRICK G JOHNSTONUNIVERSITYCENTRE FORBEL FASTCANCER RESEARCH

the lungs of mice irradiated with FLASH (yellow bar) and conventional dose-rate (red bar) is statistically significant (p < 0.05).

Biological mechanisms at UHDR?

- Direct DNA damage, standard paradigm for radiation effects
- Lack of understanding of biological response at Ultra-high dose-rate
- Bespoke research infrastructure required



From Vozenin, Spitz, Limoli

Spatial and temporal dependency of radiation action

- Future radiotherapies have multiple options for spatial and temporal delivery schedules
- Most offer differential protection of normal tissue
- The biological rationale is not clear
- The impact of increased doserate is unclear
- LhARA will be able to test the interrelationship between temporal and spatial effects for different ion species

Beam Size/modulation

Griffin *et al.*, History and current perspectives on the biological effects of high-dose spatial fractionation and high dose-rate approaches: GRID, Microbeam & FLASH radiotherapy. *Br J Radiol*. 2020 Sep 1;93(1113):20200217

Summary

- IhARA will provide a unique UK platform for Radiobiology studies of laser driven ions and photons:
 - Validating the **future applications** of laser driven sources
 - Testing largely **unexplored regimes** of ultra-high dose rates
 - Validating new understanding of **dose-rate effects**
- With the development and optimization of beam production and delivery techniques more energetic ion beams and species will be available.
- A range of dose-rates are possible including well beyond the FLASH range where physical, chemical and biology knowledge is limited.
- To properly understand ultra-high dose-rate radiobiology more comparisons are needed at similar energies with conventional ions and photon sources across a range of dose-rates and biological models.

