Exploration of distinct spatiotemporal dose distributions at LhARA

Yolanda Prezado

Radiotherapy: a paradigm shift in the 21th century

Exploration of the influence of the different parameters on the biological response

Spatially Fractionated Radiation Therapy (SFRT)

- large fields (≥ 1 cm)
- laterally homogeneous dose distributions

- field composed of smaller **beamlets**
- laterally heterogeneous dose distributions (*peaks* and *valleys*)
- → increase of normal tissue tolerance

PROTONMBRT: an innovative therapeutic approach

Charged particles

Minibeam radiation therapy (MBRT)

Proton MBRT

Prezado et al. 2013

Beam width < 1 mm

ERC consolidator grant

pMBRT increases the therapeutic index for high-grade gliomas

Equivalent or superior tumor (rat glioma) control than standard proton therapy

25 Gy/one fraction

Prezado et al. Scie Reports 2017; Lamirault et al. Scie Reports 2020

Determinant role of immune system in the anti-tumor response of MBRT

MBRT and Conventional irradiations leads to different temporal and spatial distributions

A. Bertho et al. Redjournal 2022

48 h post-irradiation

Minibeam radiation therapy could provide long-term anti-tumor immunity

Irradiated and cured immunocompetent RG2-bearing rats were rechallenged with RG2 tumor cells (3 to 6 months after irradiation). While naïve controls developed tumor normally, this was not the case for any of the previously irradiated animals.

MBRT

A. Bertho et al. Redjournal 2022

Ideal beam features

Low divergence

Small emittance

Magnetically focussed minibeams

LhARA → FWHM < 0.5 mm

T. Schneider et al. Scientific Reports 2020

can pave the way towards combination of pMBRT + FLASH

Carbon minibeam radiation therapy @ GSI

Very heavy ions MBRT

Ne, Si and Ar ions used in the past, extremely efficient for the treatment of hypoxic tumors (Castro 1994). HOWEVER, abandoned due to important side effects in normal tissues

Ne MBRT @ HIMAC, mice's legs irradiation

Histopathology Evaluation Scoring Resuts

MBRT leads to a net reduction of toxicity as compared to BB Potential renewed use of very heavy ions for therapy!

Prezado et al Cancers 2021

Missing the full picture

Normal tissues	Tumor
Vascular effects	
Prompt repair	Damage
Cell signalling	
Positive "bystander"-like effects	Cytotoxic "bystander"-like effects
Immune system	
Reduced inflammation	Immune infltration/activation
Cell migration, hyperplasia and proliferation	ROS production and difussion?

LhARA will open new a wide range of possibilities for exploration

Evaluation of the influence of different fractionation schemes in SFRT

Optimised spatiotemporal dose distributions

Influence of the particle type

Assessment on the (ultra high) dose-rate dependance in SFRT

Influence of the particle type

LhARA

Superior Dose Depth Distribution & Physical Beam Characteristics

-Higher LET -Superior RBE -Low OER -Narrow penumbra

Physics

Beam characterization
 Beam heterogeneity

Radiobiological Research

-Development of radioprotectors -Carbon ion interaction with diff tissues -Metabolism

-Microenvironment

-CSCs

Engineering

-Gantry design -Miniaturization

Material Science

-Target Production -Substance lighter than concrete, but just as effective

Increasing the Patient Experience

-New Lhara Ion therapy-Less toxicity-Given in short period of time-Cost effectiveness research

Clinical Biology Research

-Dose limitations

-Toxicity

Multidisciplinary

UK

Lhara-Ion

Therapy

Program

Radiology

-Positron imaging

-Dose distribution

-lonacoustic Imaging

-Which tumor histologies benefit most
-Does it overcome tumor microenvironment
-Development of new clinical trial design

Clinical Physics Research

- -Dose and treatment planning
- -Development of IMCT
- -Absorbed Dose Calculations
- -Modeling RBE

STFC/UKRI/ITRF

-Beam Production -Beam Delivery -Accelerator miniaturization -Active and Passive Beam Shaping

Courtesy A. Giaccia

Thank you very much for your attention!

yolanda.prezado@curie.fr

