

LhARA IAB Review Accelerators and Technology WP3: Proton and ion capture

Christopher Baker (on behalf of WP3)

Capture work package

- Holistic approach to project, with feedback and synergy
- 1. Take output from upstream components, laser source (see WP2), as input
- 2. Tailor beam as required for transfer line capabilities (see WP6) and end-station requirements (WP4, WP5)

Gabor lens

No. 4055 July 19, 1947 NATURE

89

A Space-Charge Lens for the Focusing of Ion Beams

Some time ago I proposed a magnetron of special design as a divergent lens for electron beams¹. It now appears that the same device may become useful as a very powerful concentrating lens for positive ions, particularly for ion beams of extreme energy.

The focal length of a Gabor lens of length l is given in terms of the electron number density by:

$$\frac{1}{f} = \frac{e^2 n_e}{4\epsilon_0 U} l \,; \tag{1}$$

where e is the magnitude of the electric charge of the electron, n_e is the number density of the electrons confined within the lens, ϵ_0 the permittivity of free space, and U the kinetic energy of the particle beam.

doi:10.1038/160089b0 doi: 10.3389/fphy.2020.567738

3

Illustrative Beam parameters for Capture section

• (see WP2 & WP6 for details)

	Input	Output
Energy range	0–20 MeV	13 – 17 MeV
Divergence	50 mrad	~1E-6 mrad
Flux (proton no. / pulse)	10 ¹⁰	>109
Radius	<1 cm	<4 cm
Length	~8ns	~8ns
Repetition rate	10 – 1000 Hz	10 – 1000 Hz

Capture system overview (see WP6)

Simulations - Beam

- Particle tracking
 - BDSIM, GPT, VSIM
 - Ideal behaviour, approximated, & simulated fields

HT Lau PhD Thesis Imperial College London (2021)

Simulations – Plasma

Appl. Sci. 11 4357 (2021)

Lenses - Magnetic field (solenoid)

- Focussing strength proportional to square of magnetic field strength (current density)
- Normal conducting or Superconducting options
 - Non-trivial design Windings, thermal, jackets, etc.
 - Financially expensive Materials, specialists
 - Power intensive Electrical and cooling
 - Limited flexibility
 - Well known technology
 - Commercially available
- Risk mitigation programme includes preliminary solenoid design efforts

Lenses - Electric field (plasma), Gabor Lens

- Focussing strength proportional to plasma density
 - V. high E-fields (& hence focussing strengths) possible
 - Dictated predominantly by applied voltages
- Existing Gabor lens attempts use high-temperature discharge plasma
 - Shot-by-shot synchronised with ion source
 - Each plasma is quasi-stable
 - Plasma established by limited control of initial conditions
 - No known successful implementation despite many decades of effort
- Proposed Gabor lens will take a <u>different approach</u> & build upon knowledge of equilibrated non-neutral plasmas

Existing experimental lens effort examples

Figure 1. Internal structure of the IC Gabor lens viewed in longitudinal cross-section. The main components are: 1-central anode, 2-end electrodes, 3-end flanges, 4-vacuum tube, 5-pancake coils, 6-outer tube, 7-high-voltage feed-through.

Appl. Sci. **11** 4357 (2021) Proc. IPAC2016 TUPMY024 Ecloud '18 Proc. 143 (2020) Phys Rev STAB **14** 121301 (2011)

Existing non-neutral plasma

PHYSICS OF PLASMAS 13, 022101 (2006)

Finding the radial parallel temperature profile in a non-neutral plasma using equilibrium calculations on experimental data

Grant W. Hart and Bryan G. Peterson

FIG. 1. Electric and magnetic fields in a Malmberg-Penning trap.

Our experiment is a fairly typical Malmberg-Penning trap with a nominal plasma length of 60 cm and a ring radius

of 4 cm. Typically our plasmas had a radius of about 2.5 cm. The central density in these data is near 7×10^{12} m⁻³. Our neutral gas pressure is normally near 8×10^{-9} Torr. While we have not made the measurement for these specific data sets, a typical particle confinement time in this machine is 5-6 s.

Phys. Plasmas, Vol. 7, No. 7, July 2000 2776

Confinement and manipulation of non-neutral plasmas using rotating wall electric fields

E. M. Hollmann, F. Anderegg, and C. F. Driscoll

A "rotating wall" perturbation technique enables confinement of up to 3×10^9 electrons or 10^9 ions in Penning–Malmberg traps for periods of weeks. These rotating wall electric fields transfer torque

11

Existing plasma in ALPHA at CERN

- Length ~ 10 cm
- Radius ~ 0.5 mm (at 1T)
- Density 10¹² -10¹⁴ m⁻³

Phys Rev Lett 120 025001 (2018)

Plasma parameters

	Preliminary	Pre-construction	Final					
Diameter	1 cm	3 cm	3.5 cm					
Plasma Length	10 cm	1 m	1.2 m					
Density	~10 ¹³ m ⁻³	5x10 ¹⁴ m ⁻³	5x10 ¹⁵ m ⁻³					
Space-charge potential	20 V	2 kV	50 kV					
Focal length	1000's m	10's m	1 m					
B -field	0.03 T	0.1 T	0.15 T					

Iterative & parameterised approach in preliminary & pre-construction phases

Proposed Apparatus (preconstruction phase)

R&D Philosophy

- Cautious approach
 - Built upon decades long experiences

• Iterative approach

- Confirm simulation methods & feedback into multiple designs & apparatus upgrades
- Vary single parameter (as far as possible)
 - Analyse using Machine Learning due to correlations
- Confirm 'known physics' (scaling laws) in new apparatus

Risks / mitigations

Being unable to create a suitable plasma:

- Density
- Size (radius, length)
- Timescales
- Possible technical/engineering solutions
 - Utilise inbuilt redundancy e.g. Increase confining fields, compartmentalise plasma
 - Modify designs e.g. Increase apparatus size
- Should be identified in simulations!

Lens options

- End of preconstruction phase report to provide recommendation
- Why not implement magnetic from outset?
 - Magnetic lens implementation as challenging as electric lens
 - Electric lens lay some groundwork (magnet design)
 - Limited magnetic vs. significant electric flexibility
 - Significant lifetime cost savings using electric
 - Significant technology transfer opportunities for electric

Resources

- Current ITRF Scoping project provides limited preliminary activity resources
 - Enables profitable studies for preconstruction phase apparatus design
 - Limited by one junior postdoctoral researcher
 - Enough for 4 FTE personnel!
- Existing apparatus at Swansea (& internationally) to be employed for studies
- Existing international expertise employed for efficiency
- Timeline identifies years 2, 5 (& 7) as critical
 - Resource shortfall early can be recovered at later stage (at non-linear & higher integrated cost)

Timeline

- Reprofile with ITRF resources
- Compressed timescale for detailed studies
- Required studies still achieved with additional personnel, outsourcing, & overspecifications
 - Increased costs

	Year 1				Year 2				Year 3					Yea	ar 4		Year 5			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Upgrade Swansea Apparatus																				
Study plasma in Swansea apparatus																				
Study test bench hardware options with plasma																				-
Simulations - validate												2								
Simualtions - study							1													
Test bench - design																				
Test bench - ordering													-							_
Test bench - assembly																				-
Test Bench commissioning																				
Test Bench - plasma study	-																			
Source Interface																				
Original plan ITRF reprofiled plan																				

21

WP3 Personnel

- W. Bertsche
- M. Charlton
- S. Eriksson
- T. Dascalu
- J. Fajans
- J. Wurtele

- B. Bingham
- R. Hugtenburg
- J. Purden
- A. Knoll
- E. Bennet
- PDRA, etc.

The University of Manchester

Science & Technology Facilities Council Rutherford Appleton Laboratory

Imperial College London

Summary

- A breadth of personnel & support exist to ensure success of work package
 - Experimental, theoretical, medical, plasma, and accelerator physicists
 - HPC and supercomputer engineering support
 - Mechanical engineering support
 - Etc.
- No known fundamental physics issues foreseen
- Decades of large project experience available within the WP
- Significant experience developing non-neutral plasma, and techniques, for both study and use
- The risks and challenges (and opportunities) are recognised and constantly evaluated
 - associated with taking different approach (non-neutral vs. discharge)
 - · associated with advancing individual non-neutral plasma aspects
 - associated with combining many state-of-the-art aspects
 - current non-ideal funding profile also increases overall risk

Questions?