Imperial College London

Stage 1 and Stage 2 vision

J. Pasternak

27/10/2022, LhARA Review

Imperial College London

Outline

- Introduction
- LhARA baseline, Stage I
- LhARA baseline, Stage II
- Conclusions

LhARA Layout

Stage 1 Overview

- Beam up to 15 MeV protons & ions
- Vacuum nozzle before capture section for momentum cleaning
- 2 Gabor lenses in the capture section for point to parallel optics
- 3 further lenses for matching & energy selection
- RF cavities for longitudinal phase space manipulation
- Octupole & collimation for symmetric, uniform dose delivery
- Vertical matching arc & end station delivery
- Abort line

Stage 1 Design Parameters

Particle Tracking

- MADX: Initial design
- Hybrid Monte Carlo strategy:
 - BDSIM: Accelerator tracking + particle-matter interactions (Geant4)
 - GPT: Particle tracking + space charge forces
- Gabor lenses modelled as equivalent strength solenoids
- Low energy contaminants between S=0-5cm
 - S=5-10 cm modelled with space charge
- Excellent tracking agreement between tracking codes
- Small space-charge induced emittance growth

Beam Phase Space

- Phase space aberration arises in Gabor lenses / solenoids
- Octupoles & collimation improves beam uniformity

Energy Spread Control

-

Work by T.S. Dascalu

- 3 collimators:
 - 1: Energy collimation
 - 2: Beam shaping
 - 3: Momentum cleaning

- Momentum cleaning required for removing energy distribution tails
- 2% energy spread achievable with only a modest transmission decrease

Design Updates

- Modified Gabor lens strengths & alternative solenoid strengths
- Optimise beam transmission in conjunction with updated collimator settings.
- Comparable simulation performance with field maps replacing solenoids
- Wien filter for energy selection if solenoids are selected.

Element	Modified Parameter	Original Value	Re-optimised Value
Gabor Lens 1	Magnetic field	$B = 1.2868 [{\rm T}]$	B = 1.4387 [T]
Gabor Lens 2	Magnetic field	B = 0.6671 [T]	B = 0.5271 [T]
Gabor Lens 3	Magnetic field	$B = 0.8139 [{\rm T}]$	(unchanged)
Gabor Lens 4	Magnetic field	$B=0.6852[{\rm T}]$	$B = 0.7284 [{\rm T}]$
Gabor Lens 5	Magnetic field	$B=0.6542[{\rm T}]$	$B = 0.6338 [{\rm T}]$
			Equivalent solenoic

Equivalent solenoid field strength

Stage 2:Injection Line

Parameter	Value or range	Unit
Injection line		
Number of bending magnets in the injection line	7	
Number of quadrupoles in the injection line	10	

Parameter	Value	Unit
Beam energy	15	MeV
Total relative energy spread	± 2	%
Nominal physical RMS emittance (both planes)	$4.1 imes 10^{-7}$	π m rad
Incoherent space charge tune shift	-0.8	
Bunching factor	0.023	
Total bunch length	8.1	ns
Bunch intensity	10^{9}	

- Modified Gabor Lens strengths for reduced stage 1 Twiss Beta function optics needed for FFA injection

> Beam from Laser-Target

Capture

Injection Line Performance

- Beam simulated in GPT with & without space charge.
- Good agreement between BDSIM and GPT without space charge.

- Emittance growth observed when modelling space charge forces.
 - Final dimensions do not match FFA cell requirements optimisation is required.
- Horizontal beam size jumps due to GPT output capturing the bunch partially within sector-bend fields

FFA post-accelerator

Unit

MeV

m

m

m

MHz

Т

Parameter	Value or range		
FFA			
FFA: Machine type	single spiral scaling FFA		
FFA: Extraction energy	15–127		
FFA: Number of cells	10		
FFA: Orbit R_{\min}	2.92		
FFA: Orbit R _{max}	3.48		
FFA: Orbit excursion	0.56		
FFA: Number of RF cavities	2		
FFA: RF frequency	1.46–6.48		
FFA: Max B field	1.4		
FFA: Ring tune (x,y)	(2.83,1.22)		
FFA: Number of kickers	2		
FFA: Number of septa	2		

- FixField simulations show good performance
 - Non-linearities, fringe fields
 - No space charge
- Simulate FFA design in OPAL for space charge modelling

- Factor 3 gain in momentum, up to 127 MeV in energy for protons, 33.4 MeV/u for C⁶⁺ ions.
- Trade-off between orbit excursion and straight section lengths to accommodate injection &
- extraction systems
- 2 cavities for operational stability

Motivations for a Medical/Radiobiological FFA (Fixed Field Accelerator)

Advantages of FFA for medical/radiobiological applications:

- High/variable dose delivery (high rep rate 10-100 Hz)
- Variable energy operation without enegy degraders
- Compact size and low cost ->less RF power,
 cheaper and simpler magnet power supplies than an equivalent RCS
- Simple and efficient extraction, similar to RCS
- Stable and easy operation, more stable than RCS
- Multiple extraction ports (optionlal)
- Bunch to Pixel active scanning possible, but slower extraction may be also possible
- Multiple ion capability

Energy Variability using Laser Accelerated Ions

LhARA Ring Tracking

- Performed using proven stepwise tracking code •
- It takes into account fringe fields and non-linear field components ٠
- Results show dynamical acceptances are much larger than physical ones ٠
- No space charge effects included yet ullet
- Tracking performed using FixField code ٠

41.61.8

21

Stage 2 Extraction Line

Parameter	Value or range	Unit
Extraction line		
Number of bending magnets in the extraction line	2	
Number of quadrupoles in the extraction line	8	
Vertical arc bending angle	90	Degrees
Number of bending magnets in the vertical arc	2	
Number of quadrupoles in the vertical arc	6	
Number of cavities for longitudinal phase space manipulation	5	
Number of quadrupoles in the in vivo beam line	4	

- Flexibility to accommodate uncertainties in extracted FFA emittance
 - Up to a factor 10 larger

- Space charge

- Optics flexibility to also offer wide range of beam conditions to serve end stations.
 - 1- 30 mm spot size

Stage 2 in-vitro Line

_

- Scaled version of the stage 1 low energy *in-vitro* beam line.

To *in-vitro* end station

- Longer dipoles to remain in normal conducting magnet limits.
- Good transport performance across stage 2 energy range in BDSIM.
- Space charge impacts tracking for all extraction line optics configurations.

extraction line

Beam from

Stage 2 in-vivo Line

- Beam delivered from unenergised *in-vitro* dipole
- Drift to clear *in-vitro* arc & accommodate RF systems & diagnostics
- Optics flexibility to deliver beams sizes of 1-30 mm
- Significant impact of space charge forces for nominal emittance beam

To in-vitro

end station

Deliverable Dose Estimation

- BDSIM energy deposition in end station target materials (H.T. Lau, IC).
- Monoenergetic idealised beams
 - Radiobiological effects from different Bragg curve regions
- Equivalent water phantom volume simulated at Bragg peak depths
 - 10 Hz repetition rate

		protons		carbon
Kinetic energy	12 MeV	15 MeV	127 MeV	33.4 MeV/u
Bunch length	$7\mathrm{ns}$	$7\mathrm{ns}$	$41.5\mathrm{ns}$	$75.2\mathrm{ns}$
Dose per pulse	7.1 Gy	12.8 Gy	15.6 Gy	73.0 Gy
Instantaneous dose rate	$1.0 imes 10^9{ m Gy/s}$	$1.8 imes 10^9$ Gy/s	$3.8 imes 10^8$ Gy/s	$9.7 imes10^8{ m Gy/s}$
Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s

London Industrial/Science Collaborations for FFA design

- FFA Magnet SigmaPhi
 - Constructed RACCAM magnet
 - Expected to construct FETS FFA magnet prototype
- MA RF cavity

Imperial College

- Existing solutions at KURNS, J-PARC, Kyushu University, CERN
- Established collaboration with RAL-ISIS
- Several manufacturers for MA cores
- Sustainability
 - Please see Neil's talk

Imperial College London

Conclusions

- LhARA Stage 1 can use Gabor lenses or solenoids
 - Good baseline design has been created
- LhARA at Stage 2 can use FFA-type ring as a post-accelerator enabling variable energy beams of various types of ions
 - Injection line line design has been created, but needs to be updated
 - RF system based on MA cavities are being explored
- The cost effective, spiral scaling FFA chosen for the baseline shows a good performance in tracking studies
- Feasible ring injection, extraction and beam transport to the end stations at Stage 2 have been designed
- Essential R&D items:
 - finalisation of the lattice design (type, working point, etc.)
 - the main FFA magnet, and
 - the RF system for the ring

Imperial College London

FFA Ring with subsystems

Parameter	unit	value
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees	48.7
thickness	cm	1
full gap	cm	3
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	1.12
magnetic length	m	0.9
deflection angle	degrees	34.38
thickness	cm	1
full gap	cm	2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	ns	320
flat top duration	ns	25
full gap	cm	3
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	Т	0.05
deflection angle	mrad	19.3
rise time	ns	110
flat top duration	ns	40
full gap	cm	2

Essential R&D

Magnet types to be considered

- For LhARA magnet with parallel gap with distributed windings (but a single current) would be of choice with gap controlled by clamp. Concepts like an active clamp could be of interest too.
- Another important aspect of the R&D is the technology transfer for Magnetic Alloy (MA) loaded RF cavities for the ring. Those type of cavities are in routine, operation for example at J-PARC, Kyoto University (KURNS) and at CERN J. Past

Magnet with distributed conductors:

- Parallel gap vertical tune more stable,
- Flexible field and k adjustment,
 Chosen for IonBeta machine at Kyoto University (KURNS)
 - "Gap shaping" magnet:
 - •Developed by SIGMAPHI for RACCAM project
 - •Initialy thought as more difficult
 - •Behaves very well

•Chosen for the RACCAM prototype construction

