University of London
Science and Engineering

Optical Simulations for LhARA test stand
 Peter Hobson
 School of Physical and Chemical Sciences

16 February 2023

Modelling

1. Volume is assumed to be ideal water (100% transmitting) contained within a cylinder surrounded by air;
2. Non-sequential rays are traced with "ray-splitting" enabled (i.e. Fresnel reflection and polarization is accounted for);
3. Imaging optics are a plausible combination of two commercial achromatic lenses but have not been in any way optimised;
4. The detector is perfect (no noise, no pixel gaps);
5. The scintillation yield is assumed to be 10000 photons per MeV (typical of Eljen liquid organic scintillators);
6. The beam is modelled as a cylinder of 10 mm diameter sub-divided in z into a number of slices. Each slice has a different intensity and rays are emitted isotropically in each slice;
7. All rays have a single wavelength of 400 nm ;
8. Simulations were carried out using ZEMAX OpticStudio Professional V22.2 on my home PC (i5 6/12 core @4.6 GHz peak, 32 Gbytes of 3200 MHz DDR4 memory).

Geometry View 3D render

Geometry View 2D wire

Particle beam assumed direction

Particle beam is assumed to come up from the -Y direction, four beam cylinder slices of 10 mm diameter are modelled here, the one coloured orange is in the position of the "Bragg" peak. Each slice is 1.0 mm thick.

Ray splitting is off for clarity.

Results

400 million primary rays traced, slices have intensities in the ratio 1:2:4:8. Remember the lens system inverts the image!

About 1% of the primary rays make it to the detector.

Detector has 320×320 pixels, below is shown the column at $\mathrm{X}=0$.

Results 2

Particle beam assumed direction

40 million primary rays traced, slices have intensities in the ratio 1:2:4:8. Remember the lens system inverts the image!

About 1% of the primary rays make it to the detector.

Detector has 4×40 pixels, below is shown the column at $\mathrm{X}=0$.

Results 3

Particle beam assumed direction

200 thousand primary rays traced (~ one 20 MeV particle), slices have intensities in the ratio 1:2:4:8.

Detector to left has 4×40 pixels Detector below has 320×320 pixels.

