

Optical Simulations for LhARA test stand (4) Peter Hobson

School of Physical and Chemical Sciences

21 April 2023

Modelling of whole system

- 1. Using non-sequential ray tracing;
- 2. 200 million primary rays traced, rays split according to Fresnel equations;
- 3. 50 mm of water assumed before a glass window;
- 4. Glass window is BK7, 5 mm thick, followed by an air gap before the front surface of the imaging lens;
- 5. All rays have a single wavelength of 400 nm, **10000 photons per MeV** assumed;
- "Black" surfaces are now 5% reflective (100% specular) or 5% reflective split 80% Lambertian scatter and 20% specular;
- Simulations were carried out using ZEMAX OpticStudio Professional V22.2 on my home PC (Gen 11 i5 6/12 core @4.3 GHz sustained average, 32 Gbytes of 3200 MHz DDR4 memory).

Overall view of simulated system

Changing the F# of the imaging lens

otal Power

: 6.0554E-02 Watts

'eak Irradiance : 5.8964E-01 Watts/cm^2
'otal Power : 1.3472E-01 Watts

Test11_reallens_

Black surfaces are 5% specular reflecting

Test11_reallens_

Changing the F# of the imaging lens

Incoherent Irradiance		Incoherent Irradiance	
LARA Test 11 14/04/2023 Detector 21, NSCG Surface 1: Row 75, Y = 1.4500E+00 Size 12.000 W X 12.000 H Millimeters, Pixels 120 W X 120 H, Total Hits = 3026238 Peak Irradiance : 5.9265E-01 Watts/cm^2	Queen Mary University of London School of Physical and Chemical Sciences London, E1 4NS UK	LARA Test 11 14/04/2023 Detector 21, NSCG Surface 1: Row 75, Y = 1.4500E+00 Size 12.000 W X 12.000 H Millimeters, Pixels 120 W X 120 H, Total Hits = 1519687 Peak Irradiance : 2.9121E-01 Watts/cm^2	Queen Mary University of London School of Physical and Chemical Sciences London, E1 4NS UK
Total Power : 1.3470E-01 Watts	Testll_reallens_cylinderVol_3_KaptonAir_imperfectAbs.zmx Configuration 1 of 1	Total Power : 6.0554E-02 Watts	Testll_reallens_cylinderVol_5_KaptonAir_imperfectAbs.zmx Configuration 1 of 1

Black surfaces are 5% specular reflecting

Changing the scatter function of "Black" surfaces

Incoherent Irradiance		Incoherent Irradiance	
LARA Test 11 14/04/2023 Detector 21, NSCG Surface 1: Row 75, Y = 1.4500E+00 Size 12.000 W X 12.000 H Millimeters, Pixels 120 W X 120 H, Total Hits = 1519687 Peak Tradiance : 2.9121E-01 Watts/cm42	Queen Mary University of London School of Physical and Chemical Sciences London, El 4NS UK	LARA Test 11 14/04/2023 Detector 21, NSCG Surface 1: Row 75, Y = 1.4500E+00 Size 12.000 W X 12.000 H Millimeters, Pixels 120 W X 120 H, Total Hits = 1004710 Peak Irradiance : 2.8656E-01 Watts/cm^2	Queen Mary University of London School of Physical and Chemical Sciences London, E1 4NS UK
Total Power : 6.0554E-02 Watts	Test11_reallens_cylinderVol_3_KaptonAir_imperfectAbs.zmx Configuration 1 of 1	Total Power : 5.8216E-02 Watts	Test11_reallens_cylinderVol_3_KaptonAir_imperfectAbs.zmx Configuration 1 of 1

Row 75 (y = 1.45 mm) shown here

Changing the minimum relative ray intensity (1)

10 mm diameter lens aperture 1% minimum relative ray intensity 10 mm diameter lens aperture 0.1% minimum relative ray intensity

Incoherent Irradiance		Incoherent Irradiance		
LARA Test 11	Queen Mary University of London	LARA Test 11	Queen Mary University of London	
14/04/2023	School of Physical and Chemical Sciences	14/04/2023	School of Physical and Chemical Sciences	
Detector 21, NSCG Surface 1: Row 75, $Y = 1.4500E+00$	London, E1 4NS UK	Detector 21, NSCG Surface 1: Row 75, $Y = 1.4500E+00$	London, E1 4NS UK	
Size 12.000 W X 12.000 H Millimeters, Pixels 120 W X 120 H, Total Hits = 1004710		Size 12.000 W X 12.000 H Millimeters, Pixels 120 W X 120 H, Total Hits = 2275921		
Peak Irradiance : 2.8656E-01 Watts/cm^2		Peak Irradiance : 2.8169E-01 Watts/cm^2		
Total Power : 5.8216E-02 Watts	Test11_reallens_cylinderVol_3_KaptonAir_imperfectAbs.zmx Configuration 1 of 1	Total Power : 5.8576E-02 Watts	Test11_reallens_cylinderVol_3_KaptonAir_imperfectAbs.zmx Configuration 1 of 1	

1% specular plus 4% Lambertian scatter. Row 75 (y = 1.45 mm)

Changing the minimum relative ray intensity (2)

10 mm diameter lens aperture 0.1% minimum relative ray intensity

Half-plot (cut at row 60) showing the ratio between a 0.1% and 1% relative-ray intensity cut.

1% specular plus 4% Lambertian scatter.

To do list!

- 1. Add dark/readout noise from a real camera to the images;
- 2. Use actual wavelength(s) and yield of WbLS (~ 1000 photons per MeV)*
- 3. Determine if it matters if the water volume is a cuboid;
- 4. Add the self-absorption of the scintillation light in the water*.
- 5. You need to add to this list (in priority order)!

*See for example: *NIMA* **660** (2011) 51–56; *NIMA* **967** (2020) 163860; *NIMA* **969** (2020) 163931

