

Optical Simulations for LhARA test stand (5) Peter Hobson

School of Physical and Chemical Sciences

5 May 2023

Modelling of whole system

- 1. Using non-sequential ray tracing;
- 2. Updated energy profile and much narrower beam (1.05 mm FWHM) in water.
- 3. All rays have a single wavelength of 400 nm, **1000 photons per MeV** assumed;
- 4. Detector has 100 µm square pixels (no gaps);
- 5. "Black" surfaces are 5% reflective split 80% Lambertian scatter and 20% specular;
- Simulations were carried out using ZEMAX OpticStudio Professional V22.2 on my home PC (Gen 11 i5 6/12 core @4.3 GHz sustained average, 32 Gbytes of 3200 MHz DDR4 memory).

Deposited energy spectrum

Energy deposited relative to peak

Beam FWHM = 1.05 mm

Data from Maria on 25/04/2023

Overall view of simulated system (1)

Kapton is made to be 100% absorbing or real or replaced with lower r.i. materials.

"Invisible" Kapton entrance window

Queen Mary University of London Science and Engineering

Overall view of simulated system (2)

Dielectric Kapton entrance window (n = 1.95)

Dielectric BK7 glass entrance window (n = 1.53)

Dielectric water entrance window (n = 1.34)

"Black window" (5% reflecting of which 80% is diffuse)

To do list!

- 1. Add dark/readout noise from a real camera to the images;
- 2. Use actual wavelength(s) of WbLS (~ 1000 photons per MeV)*
- 3. Determine if it matters if the water volume is a cuboid;
- 4. Add the self-absorption of the scintillation light in the water*.
- 5. You need to add to this list (in priority order)!

*See for example: *NIMA* **660** (2011) 51–56; *NIMA* **967** (2020) 163860; *NIMA* **969** (2020) 163931

