Queen Mary University of London Science and Engineering

Optical simulations of SmartPhantom Peter Hobson

School of Physical and Chemical Sciences

9 May 2024

Further Zemax work (from LhARA Collaboration meeting)

Develop image correction procedure based on synthetic sources; Include realistic sensor pixel size and noise;
Investigate the optical effect of including an acoustic sensor within the scintillator volume;
Determine the sensitivity of the simulation to intensity cut-off (0.1 \% relative at present);
Determine the sensitivity of the simulation to scintillation wavelength (chromatic aberration);
See if any further optimisation of the imaging optics is helpful; Develop a system to help us focus the imaging optics

Ultima XR -radioluminescence spectrum

Zemax simulation - imaging optics only!

Volumes are Ultima XR, BK7 window and two achromatic doublets in air, finally the sensor plane. Fields at $0,1.5$ and 3 mm on the object are traced.

Zemax simulation - imaging optics only!

Through-focus spot diagrams

$$
\begin{aligned}
& \text {-•0.406 } \\
& \text { - } 0.418 \\
& \text { - } 0.426 \\
& \text { ■•0.432 } \\
& \text { ■•0.44 } \\
& \text { - } 0.451 \\
& \text { - } 0.461 \\
& \text {-0.468 } \\
& \text { - } 0.473 \\
& \text { ■•0.48 } \\
& \text { - } 0.488 \\
& \text { ■•0.495 } \\
& \text {-•0.525 }
\end{aligned}
$$

Zemax simulation - imaging optics only!

Distortion

F-Tan(Theta) Distortion

Lateral Colour

[^0]Lateral Color

Zemax simulation - imaging optics only!

Polychromatic encircled energy using
weighted wavelengths

$\square-0.0000 \mathrm{~mm}-1.5000 \mathrm{~mm}-3.0000 \mathrm{~mm}$
Geometric Encircled Energy

Zemax simulation - imaging optics only!

On-axis

- Line \quad-Edge

Geometric Line and Edge Spread - Y-Orientation

3 mm off-axis

- -Line \quad-Edge
- Line \quad-Edge

Use only wavelengths shorter than 450 nm

Through-focus spot diagrams

1.5000 mm

Use only wavelengths longer than 450 nm

Through-focus spot diagrams

$$
\begin{aligned}
& \text {-•0.48 } \\
& \text { ■•0.473 } \\
& \text { - } 0.468 \\
& \text { ■-0.461 } \\
& \text { ■•0.525 } \\
& \text { ■•0.495 } \\
& \text { ロ・0.488 }
\end{aligned}
$$

Use only 488 nm （a doublet design wavelength）
Through－focus spot diagrams

Use only wavelengths shorter than 450 nm

Polychromatic encircled energy using
weighted wavelengths

[^1]
Use only wavelengths longer than 450 nm

Polychromatic encircled energy using
weighted wavelengths

Use only 488nm

Monochromatic encircled energy

$\Xi-0.0000 \mathrm{~mm} \Xi-1.5000 \mathrm{~mm} \boxtimes-3.0000 \mathrm{~mm}$

Use only wavelengths shorter than 450 nm

On-axis

\square-Line \quad-Edge

- Line \quad-Edge

Use only wavelengths longer than 450 nm

On-axis

- Line \quad-Edge

- -Line a -Edge

3 mm off-axis

- Line \square-Edge

Use only 488 nm

On-axis

3 mm off-axis

- Line \quad-Edge

■-Line \quad-Edge
netric Line and Edge Spread - X-Orientation Geometric Line and Edge Spread - Y-Orientation

[^0]:

[^1]: ■-0.0000 mm曰-1.5000 mm曰-3.0000 mm

