WP6 Update

J. Pasternak, IC/RAL-STFC, 17/01/2023 On behalf of WP6

Introduction

- CAD Model
- Updateted schematic
- Baseline changes
- Matching with space charge
- Review of the initial distribution
- Rematching with SCAPA simulated distribution
- Next steps

CAD Model Workflow

- Automatic generation of spreadsheet containing component surveys
- Generated from BDSIM model
- Matches component naming scheme

		AutoSave	OFF 6	8 6	Ъ.С			🖻 LhAR/	AGeometrySurvey	-v0.1 ~			Q &
Hom	e In	isert Drav	w Page	Layout	Formula	s Data Reviev	v View	Automat	e 🔉 Tell me				Comments 🖻 Share
Ĉ	ľ Å	Calibri	(Body)	√ 11	• A^	A* = = =	%∕ √	ab ≁	General	•	- -	n sert ∽	$\Sigma \cdot A_{\nabla} \cdot O \cdot \square$
Past	°	B I	<u>U</u> v	+ •	<u>⊘</u> • <u>A</u> •		€≡ →=	÷ •	<u>©</u> × % ୨	00 .00 Co	onditional Format Cel ormatting as Table Style	I Format	Sort & Find & Analyse
L81	*	× ~ .	fx										•
	А	В	С	D	E	F		G	н	I	J	К	L
1		0											
2	0	STAGE1INVI	RO Compon	ent List									
3	1	Document N	ame: Ihara-v	1.0 compo	nent coordin	nates							
4	2	8/12/2022											
5	3	Notes: Units	= mm.										
6		Section	X	Y	Z	Component Position	Compo	nent Name	Component Type	Aperture T	ype Hor. Half Aperture	Ver. Half Aperture	Comments
7	0	TR	0	0	-100.000	Start	LHA_TR_VA	C_DRI_00	drift	circular	50.000	50.000	
8	1	TR	0	0	-75.000	Middle	LHA_TR_VA	 	drift	circular	50.000	50.000	
9	2	TR	0	0	-50.000	End	LHA_TR_VA	 	drift	circular	50.000	50.000	
10	3	TR	0	0	-50.000	Start	LHA TR DIA	COL 01	ecol	circular	2.870	2.870	
11	4	TR	0	0	-25.000	Middle	LHA TR DIA	COL 01	ecol	circular	3.305	3.305	
12	5	TR	0	0	0 0	End	LHA TR DIA	COL 01	ecol	circular	2.000	2.000	
13	6	TR	0	0	0 0	Start	LHA TR VA	C DRI 01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
14	7	TR	0	0	75.000	Middle	LHA TR VA	C DRI 01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
15	8	TR	0	0	150.000	End	LHA TR VA	C DRI 01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
16	9	TR	0	0	150.000	Start	LHA TR MA	G SOL 01	solenoid	circular	50.000	50.000	
17	10	TR	0	0	578.500	Middle	LHA TR MA	G SOL 01	solenoid	circular	50.000	50.000	
18	11	TR	0	0	1007.000	End	LHA TR MA	G SOL 01	solenoid	circular	50.000	50.000	
19	12	TR	0	0	1007.000	Start	LHA TR VA	C DRI 02	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
20	13	TR	0	0	1082.000	Middle	LHA TR VA	C DRI 02	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
21	14	TR	0	0	1157.000	End	LHA TR VA	C DRI 02	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
22	15	TR	0	0	1157.000	Start	LHA TR VA	C DRI 03	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
23	16	TR	0	0	1232.000	Middle	LHA TR VA	C DRI 03	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
24	17	TR	0	0	1307.000	End	LHA_TR_VA	 	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
25	18	TR	0	0	1307.000	Start	LHA_TR_MA	G_SOL_02	solenoid	circular	50.000	50.000	
26	19	TR	0	0	1735.500	Middle	LHA_TR_MA	G_SOL_02	solenoid	circular	50.000	50.000	
27	20	TR	0	0	2164.000	End	LHA_TR_MA	G_SOL_02	solenoid	circular	50.000	50.000	
28	21	TR	0	0	2164.000	Start	LHA_TR_VA	C_DRI_04	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
29	22	TR	0	0	2239.000	Middle	LHA_TR_VA	 C_DRI_04	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
30	23	TR	0	0	2314.000	End	LHA_TR_VA	04	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
31	24	LEL	0	0	2314.000	Start	LHA_LEL_HR	F_CAV_01	cavity_pillbox	circular	50.000	50.000	
32	25	LEL	0	0	2564.000	Middle	LHA_LEL_HR	F_CAV_01	cavity_pillbox	circular	50.000	50.000	
33	26	LEL	0	0	2814.000	End	LHA LEL HR	F CAV 01	cavity_pillbox	circular	50.000	50.000	
34	27	LEL	0	0	2814.000	Start	LHA_LEL_VA	C_DRI_01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
35	28	LEL	0	0	2889.000	Middle	LHA_LEL_VA	C_DRI_01	drift	circular	50.000	50.000	Reserved for Gabor Lens physical length
						TAGEAULIEOTION	074.0504	DODT	OTAOFODINO	TAOFOIL	-		
	5	STAGE1INVIT	RO ST	AGE1AB0	JRI S	IAGETINJECTION	STAGE2A	BORI	STAGE2RING	STAGE2INVIT	RO STAGE2INVIV	+	
Re	ady 🤉	🏷 Accessibili	ty: Good to	go				_					■

- Model zero position:
 - Centre of exit plane of target housing flange

Updated Models

- Updated BDSIM model & schematic diagrams
- New model versions:
 - V4.4: main baseline design
 - V5.4: alternative baseline design

Updated Models

- Stage 2 energy selection collimation added
 - 0.2m downstream of stage 1 collimator (GL3 focal length)
 - Settings to be optimised
- 1st Octupole removed:
 - No discernible impact on bunch uniformity
 - Phase space difference at the stage 1 end station (on off):

- Sampled beam generated from Smilei (HT)
- Non-parallel beam between GL2 & GL3
 - Requirement flexibility needed to accommodate RF, shielding wall, etc.

Solenoid Strength Optimisation

1.4T, Space Charge 0.014 1.4T, No Space Charge 0.012 0.010 0.006 0.004 0.002 0.5 1.0 1.5 2.0 2.5 3.0 0.0 S (m)

ROYAL HOLLOWAY

- Optimise Gabor lens (solenoid) strengths
 - Ideally constrain solenoids < 1.4T
- Space charge forces still impact performance despite MADX optimisation efforts
 - Neither beams completely parallel
 - ~ 0.2% beam size growth over 0.5m cavity length
- GPT optimisation efforts ongoing.
 - Include GL3, maintain focal point at collimator location

Nozzle effect with SCAPA simulated distribution transmission

- 71.8% of particles within the energy range (15MeV ±2%) survives the entrance nozzle cut (r=2mm)
- 35.6% of particles within the energy range (15MeV ±2%) survives the exit nozzle cut (r=2.87mm)
 - 40.1% of particles within the energy range (15MeV ±2%) survives the exit nozzle cut (r=2.87mm) if space charge is ignored

Nozzle effect (beam parameters)

	HT's distribution	SCAPA distribution	SCAPA distribution no- SC
Mean RMS emittance [m]	1.43×10 ⁻⁸	1.26×10 ⁻⁷	5.5×10 ⁻⁸
Mean beta [m]	141.34	12.82	28.8
Mean alpha	-1418.43	-129.79	-288.03

Phase space at the exit of the nozzle (x,x') [m,rad]

Zoom: black - SCAPA w/o SC, red - HT's

Beam size in the capture section

- Beam size at the nozzle exit (2.87mm) -2.26 σ
- Beam size at the exit of the second GL with 2.26 σ is 28.4mm (77.8% of the cathode radius)
 - What is the max radius of the electron cloud we can use?
 - With the solenoid with the aperture of 36.5mm we could accept the beam up to 2.9 σ

Some preliminary conclusions and ideas

- Interesting findings on the SCAPA distribution
 - Sharp cut-off in real space
 - No very large divergence particles
 - hole in the middle for our energy (real space)
 - x/y asymmetry
- Interesting findings on the nozzle effect
 - Phase space inclination and the lab size completely defined by the geometry
 - The difference is in the angular spread spread(SCAPA)/spread(HT)~10
 - SCAPA with SC closer to the preCDR distribution
 - Maximum radius of the beam in the capture section defines, if we need to modify the nozzle or not

Rematched baseline with the SCAPA distribution

- Beam diameter of 3cm can be produced
- Issues with obtaining smaller final beam size
- Issues with matching to the Stage 2

WP6 expectations for GL design

- Focusing of equivalent ~1.4 T solenoid
- Linearity vs r (with sufficient radius)
- Reasonable uniformity vs z
- Stability
- Reproducibility
- Tunability
- Low cost
- Low power consumption
- Scalabilty

Next steps

- To improve flexibility in the Stage 1 matching
- To incorporate space charge in matching
- To find the new injection line
 - We need to do it in any case due to the new wall
- To work on the FFA update