Evaluation of the proton fluxes captured and transmitted by plasma lenses (and solenoids) in LhARA

Titus-Stefan Dascalu

LhARA fortnightly Meeting 25th April 2023

Motivation

- 1. No previous investigation of the capability of the front-end LhARA beam-line to capture protons <u>without collimators</u>
 - No direct comparison of the <u>beam losses</u> for the case of using <u>plasma lenses vs. solenoids</u>
- 2. Significant impact of vacuum nozzle on transmission of protons from source to first lens
 - Previous optimisation of energy and momentum collimators, but not of the nozzle
- 3. Full energy spectrum of more realistic protons produced by TNSA available
 - from 3-D particle-in-cell simulations (WP2)

Studies presented here are based on the **baseline design of LhARA** Stage 1 (Sep 2022)

1. Proton capture efficiency (without beam collimators)

2. Protons loss due to beam collimators

Model only the front-end of LhARA Stage 1

- Protons tracked with <u>GPT</u>
 - first 5 cm from source without space-charge (due to comoving electrons)
 - with space-charge for the rest of the beam-line
- Plasma lenses modelled as field maps

Protons at the source

- 3-D particle-in-cell simulation of SCAPA-like laser hitting a solid tape target
 - TNSA regime
 - work of E. Boella described in the ITRF/LhARA 6M Progress Report

Key figures

full energy spectrum $\sim 10^{10}$ protons

nominal energy band $\sim 2 \times 10^9$ protons (15 MeV \pm 2%)

RMS divergence angle $\sim 1^{\circ}$ (around nominal energy)

Transmission from source to first beam focus

- No vacuum nozzle, no energy collimator
 - Protons lost in the beam-pipe + inner walls of the solenoids/lenses

Beam loss integrated over angle and energy

- Beam loss calculated as fraction of number of protons produced at the source
 - Full energy spectrum

• Nominal energy band

Geometrical acceptance of Gabor lenses vs. solenoids

- Cost of large aperture of a solenoid is large overall size and mass
 - from preliminary design for normal-conducting solenoid for LhARA
- Plasma lenses generate additional focusing outside of the plasma
 - Non-linear focusing
- Plasma lenses should provide larger physical aperture
 - For diameter of the plasma identical to diameter of solenoid

1. Proton capture efficiency (without beam collimators)

2. Protons loss due to beam collimators

Model verification

- Protons with full energy spectrum
- Complete Stage 1 beam-line
- Hard-edge field maps for the Gabor lenses
- GPT for the first 10 cm, of which the last 5 cm with space-charge
- BDSIM for the rest of the beam-line, without space-charge

First significant reduction in proton flux

- At the interface between the source and the first lens
- Conical nozzle
 - 1° half-angle
 - 2 mm entrance radius

Validation of the energy-selection scheme

With solenoids

56% transmission from nozzle exit to end station

Identical energy selection with plasma/magnetic focusing

• 56% vs. 57% proton transmission within the nominal energy range from the nozzle

Conclusions

- In the absence of beam collimators, the capture section of LhARA transports a <u>larger</u> <u>number of protons</u> from the source <u>when using plasma lenses</u> compared to solenoids
- For the complete Stage 1 beam-line (baseline design, multiple collimators): <u>identical</u> <u>fractions of protons reach the end station</u> from the source with the use of <u>solenoids or</u> <u>plasma lenses</u>
 - within the nominal energy spread
- The <u>superior capture efficiency of the plasma lenses</u> compared to solenoids is suppressed by the <u>limited angular acceptance of the nozzle</u> situated downstream of the target
- Future optimisation of the nozzle should take into account
 - Beam-envelope size and divergence for protons within the nominal energy range from source
 - The full transport efficiency of the capture section of the LhARA beam-lines

Back-up slides

Single-particle motion through a lens

• Focusing strength parameter, $k \sim \frac{1}{f}$:

 $k_{\rm GL} \sim \frac{\gamma_0}{P_0^2}$

Electron plasma (Gabor) lens

Field map of lenses with edge effects

[*] DOI: 10.1103/RevModPhys.87.247

- Field map for each lens calculated separately
 - Plasma in global thermal equilibrium + rigid rotation
 - 2-D cylindrically symmetric numerical solution to Poisson-Boltzmann equations [1]

- uniform electron density
- infinitely long plasma

More realistic plasma shape

Contribution of edge-effects in beam-tracking

- Negligible differences between the two models of the lens
 - Preference for the hard-edge field map as it is much faster to generate (few minutes vs. several hours)