Ionacoustics Work Package

LhARA meeting 27/2/2024

Laser-Driven Ion (LION) Acceleration Beamline

Source – Energy Distribution

Parameters				
Laser Power [PW]	2.5			
Laser Energy [J]	70			
Laser Intensity [W/cm ²]	4x10 ²⁰			
Laser Wavelength [nm]	800			
Pulse Duration [fs]	28			
Foil target thickness [nm]	400-600			

Figure 1: Normalized energy distribution of the laser-driven protons created at the LION beamline.

Source – Angular Distribution

Figure 3: Angular distribution of the laser-driven protons at the LION beamline source.

Figure 4: 2D angular distribution of 100000 protons at the source.

LION Beamline - BDSIM

Figure 5: Side-on view of LION beamline in BDSIM.

Proton Beam

Figure 6: Spot size at the focus of the LION beamline.

Figure 7: Distribution of particles at the focus.

Figure 8: Energy spectrum of the particles at the focus.

SmartPhantom

Figure 9: Geant4 simulation of the SmartPhantom. Angled view (left), cross-section view (right).

50µm Kapton Acoustic Transmission

Acoustic gel

Setup 1

Setup 2

Kapton foil

Liquid Scintillator

Ultima Gold XR

Component	Name	Composition [weight %]
Solvents	di-isopropyl naphthlene (DIP)	40-60
	ethoxylated alkylphenol	20-40
	bis(2-ethylhexyl) hydrogen phosphate	2.5-10
	triethyl phosphate	2.5-10
	Sodium di-octylsulphosuccinate	2.5-10
	3,6-dimethyl-4octyne-3,6-diol	1.0-2.5
Scintillators	2,5 diphenyloxazole (PPO)	1-1.0
	1,4-bis (2-methylstyryl)-benzene (Bis-MSB)	0-1.0

Figure10: Liquid scintillator absorbance measurement. (a) Solutions (b) & (c) Results.

Absorption Spectra, Reference = Air

3.5

Figure 11: Liquid scintillator ZEMAX simulation.

Energy Depositions

Energy (MeV)	Range (Water)	Range (DIPN)	Ratio
10	1.202	1.303	1.083
12	1.703	1.804	1.059
15	2.605	2.705	1.038
20	4.408	4.609	1.045
30	9.217	9.918	1.076

Figure 13: Beam range comparison for different proton energies.

Pressure Distribution & Acoustic Detection

16

Beam depositions Matrix array **Matrix Array** x-y plane lane Pressure distribution along z-axis 14000 Source ۲ ۳ ۱0 [mm] 12000 --- R2 --- R3 10 10000 15 15 Pressure [Pa] 0 5 10 15 0 5 10 15 [mm] [mm] y-z plane 4000 [mm] 2000 Beam _____ Ó 10 12 14 Ż à 6 8 z-position [mm] 15 0 5 10 15 [mm] x-y plane x-z plane Pressure distribution along z-axis 14000 - Source ي س ا --- R1 [س 10 --- R2 12000 --- R3 10000 Background noise 🗸 15 15 ressure [Pa] 5 10 [mm] 8000 0 15 0 5 10 15 [mm] Electronic noise 🗸 2 6000 y-z plane Frequency response 🗸 ň 4000 [mm] 2000 2 - 10 14 10 12 4

15

0

10

5 [mm] 15

16

z-position [mm]

Linear array Beam depositions Linear Array x-y plane x-z p Pressure distribution along z-axis 14000 Source ۔ سے 10 ي الس 10 --- R2 12000 --- R3 10000 Pressure [Pa] 8000 15 15 10 0 0 5 15 5 10 15 [mm] [mm] 6000 y-z plane 4000 2000 Beam Ē 10 12 14 Ò ż 4 6 6 8 z-position [mm] 10 16 15 0 5 10 15 [mm] Pressure distribution along z-axis x-y plane x-z plane 35000 Source --- R2 30000 --- R3 ۔ سے 10 E 10 25000 e 20000 Background noise 🗸 a. 15000-15 15 5 10 [mm] 0 15 0 10 15 5 [mm] Electronic noise 🗸 F 2 y-z plane 10000 Frequency response 🗸 5000 <u>ال</u> 10 2 12 14 Ó Ż 4 6 8 z-position [mm] 10 16 15 10 0 5 15

[mm]

1

Figure 14: Scintillating fibre plane stations (green) in the Geant4.

Figure 16: Scintillating fibre plane detectors built in the lab.