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Bystander Effect in Spatially Fractionated Radiotherapy

* Bystander effect (RIBE): “lIonising radiation induced non-targeted effects in non-
irradiated cells within or nearby an irradiated volume” [Wang et al., 2018]

* Evidence of RIBE in proton irradiation [Mukherjee and Chakraborty, 2019; Pouget et al.,
2018]

* BEvidence of RIBE in partial particle irradiation [Shao et al., 2006]

* There is evidence of RIBE in proton SFRT in some cell lines (A549) [ Autsavapromporn et
al., 2023].
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Preliminary Experimental Results

* J. McGarrigle —> FaDu cells
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Possible Signalling Agents

* RIBE due to communication between irradiated and non-irradiated cells

through signalling agents [Klammer et al., 2015].

* Examples of candidates [Marin et al., 2015]:

» Small species: free radicals, reactive oxygen species (ROS), Ca** and
nitrogen oxide (NO).

* Large species: cytokines, exosomes and other proteins.
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ROS in Water Radiolysis
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Simulation Details

+ Based on T. Masilela’s set-up. Beams: 0.4 x 6 mm?2; ctc: 3.2 mm
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Simulation Results
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Transport of H,O, After Generation
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Neglecting Homogenous Chemical Stage

* TOPAS-nBio cannot
consider the
homogenous
chemical stage.

+ Free diffusion shows

that the spatial
distribution doesn’t
change in < 1s.
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Neglecting Homogenous Chemical Stage

* Free ditfusion is implemented using

Smoluchowski diffusion theory 2’\3(7') = 2o + V2D . 1. § .

|Karamitros et al., 2014].

+ Each molecule generated durine th A / >

simulation will be transported
using these equations.
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Neglecting Homogeneous Chemical Stage

* We assume that the stage takes place H,0,
because free diffusion is slow enough.

(o))

O,

BN

+ We assume that H,O, concentration’s
evolution is homogeneous in space
because the material is homogeneous.
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Neglecting Homogeneous Chemical Stage

* i.e.: We assume this spatial
distribution is valid.

* Most likely with different
absolute values but (sort of) the
same proportion.
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Transport of H,O, After Generation

* Add a probability for survival to
molecules transported using
Smoluchowski free diffusion theory.

+ Probability of survival = e

* Will consider the time when the
concentration is spatially homogenous.
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Transport of HyO, After Generation

+ Based on background pseudo first-order reactions, for concentration ot H,O,,
¢d(x,y), add exponential decay:

dD(x,y, 7)
dar

= — kD(x,y, 7) -> O =gpe "

« k is the (pseudo) first order rate constant.

+ In Zhang etal. 2023, k=2-10"1,2-107%,2 - 107> s~ ! based on cell absorption.
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y (cm)

Model for Transport - k = 2.3 - 1072

+ Free diffusion
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* Free diffusion + exponential decay
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Physical Limits of H,O, range

* Time to achieve homogenous concentration will depend on valley width.

« Type of SFRT may influence the impact that H>O; has.
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Physical Limit of H,O, range

+ T. Masilela —> Minibeam - size: 0.4 x 6 mm?2 ; ctc: 3.2 mm
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+ J. McGarrigle —> Microbeam - size: 0.1 x 8 mm?; ctc: 0.5 mm

Physical Limit of H,O, range
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Physical Limit of H,O, range

« Pdt tor distance travelled by H>O» Time of diffusion = 60 s
after some time. —— Analytical
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Physical Limit of H,O, range

* Analytical probability density function: ; ree diffusion
4rr? r’ - E
Pt = o &P (_4_Dt e ||
* Average can be calculated analytically. . E — Analytical average
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H,0, as RIBE Signalling Agent

* Short half-life: ~50 ms [Orrico et al., 2022], 2.2 s [Ledo et al., 2022]

* "May give rise to long-lived radicals that have half-lives of minutes to hours”
|Deckrock et al., 2017].

* We studied a possible mechanism for this phenomenon involving Ca2*.



Cell Models for the Bystander Effect

* There is a lack of experimental quantitative data on RIBE agent production.

* Reviewed models for cell experiments involving RIBE which do not require
specific concentrations as input:

1. Matsuya et al. 2018
2. McMahon et al. 2013
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Results McMahon etal. 2013

* Model is originally applied to 3 examples: uniform irradiation, media
transfer experiments, partial irradiation.

* Qriginally developed for photons, adapted it to protons.

* Managed to use this model for proton cell uniform irradiation experiments
|Guan et al. 2015].
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Survival fraction

Results McMahon etal. 2013
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Prospects

* Use McMahon 2013 for other proton irradiation settings.

* Try to include our studies on signal transport in this model and remove
fitting parameters.

* Research experimental data on FaDu RIBE (signals and their production).



Summary

* Simulated ROS generated after irradiation.
+ Analysed the behaviour of H,O, after t > 107° s including removal.
+ Compared how beam arrangement can influence H,O,’s impact.

* Found model for cells survival including RIBE, suitable for our experiments.
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Ca?* Signalling in RIBE
* Important signalling species.
* Generated during all sorts of irradiation.

« Positive feedback loop with ROS.

* Ca2t -waves phenomenon [Deckrock et al., 2017].

= Quantity generated by direct radiation or by ROS?

= Removal?

- Halft-life?



Other Research Not Included

+ Study of Model for Transport I done for other radiolysis products.
+ QOther Model for Transport studied, has advantages over Model I.
+ Found k values from experimental data.

* Study of homogenous coverage done for several beam arrays.

+ Reviewed several Ca** transport models and its impact on RIBE.
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