

LhARA Laser-Driven Proton & Ion Source WP2

Update on recent scintillator measurements 4th June 2024

Diagnostic requirements of ion source

Laser driven ions:

- Quasi-thermal energy spectrum
- Divergent, but not isotropic (ie spectrum varies with angle)
- Multispecies, multi-charge state
- Generated alongside high energy electrons (> MeV) & x-rays

Diagnostic requirements:

- Angularly resolved
- High resolution spectrum
- Minimise background
- High repetition rate (!)

Types of diagnostics

Thomson Parabola Spectrometer

- High resolution spectrum
- No spatial information

Beam profiler

High spatial resolution

Types of diagnostics

Thomson Parabola Spectrometer

- High resolution spectrum
- No spatial information

"PROBIES" Beam profiler

- Some spectral information
- Some spatial information

What do we need from the scintillator?

Thomson Parabola Spectrometer

- High dynamic range & linearity
- High spatial resolution
- 10 Hz operation
- Very high brightness
 - High scintillation efficiency
 - Minimal dE/dx quenching

"PROBIES" Beam profiler

- High dynamic range & linearity
- High spatial resolution
- 10 Hz operation
- Minimise background radiation
 - Minimal dE/dx quenching Scintillator thickness not exceeding stopping distance of highest energy ions

What do we need from the scintillator?

Thomson Parabola Spectrometer

- High dynamic range & linearity
- High spatial resolution
- 10 Hz operation
- Very high brightness
 - High scintillation efficiency
 - Minimal dE/dx quenching

"PROBIES" Beam profiler

- High dynamic range & linearity
- High spatial resolution
- 10 Hz operation
- Minimise background radiation
 - Minimal dE/dx quenching Scintillator thickness not exceeding stopping distance of highest energy ions

Plastic scintillators

Decent light output Fast response Cheap & flexible Strong quenching?

Powder phosphors

High light output Slower response Quite cheap & flexible Low quenching?

Crystals

Decent light output Slower response Relatively expensive Low quenching?

Scintillator testing at MC40

- Scintillator calibration experiment at MC40 Beamline at Birmingham
 - Total 4 days beamtime, Dec 2023 and May 2024
 - Data taken for protons at 28 and 20 MeV

M. Alderton, T. Frazer, R. Wilson, R.J. Gray, P. McKenna

M. Cook, H. Ahmed, J.S. Green

JNIVERSITY P. Parsons, C.A.J. Palmer

IMPERIAL

UNIVERSITYOF

BIRMINGHAM

N.P. Dover

T. Price

Summary of 2023 December beamtime

dE/dx dependence **Dose linearity &** absolute calibration at low dE/dx **Afterglow measurement** 1e10 3.0 640 Gy 2s Exposures 1,010 Lanex (+PROBIES) Response 2.5 **Background Reference** 14 MeV 50· Camera Counts (a.u.) CCD Counts (a.u. 100 -10⁹ 150 -200 250 1.0 300-Lanex 10⁸ BC430 350 0.5 EJ260 EJ200 200 250 50 100 150 300 350 0 EJ440 0. 10 20 30 40 50 60 70 0 0.0 P43 Time (s) 50-0 10 20 30 40 Beam Dose (Gy) 100 150 200-250-300 350 6 400 -100 200 300 400 0

Results of May 2024 beamtime

- 1) Used characterised 15ish MeV beam, with Bragg peak measurements using Markus Chamber thanks to Tony
- Performed dE/dx scan, using full aperture filters to avoid scattering issues from last time
- 3) Measured scintillator resolution using pinhole array
- 4) Performed better quantified afterglow scan for different scintillator types

15 mm beam @ 20 MeV from beamline

Typical scintillator image:

Beam lineouts:

Varied areal density before scintillators:

Effect of scintillator thickness

9

Resolution grid

Input beam, no grid

100 µm pinhole array in tungsten, in contact with scintillator

Impact on resolution of lanex scintillator

Lanex, phosphor away from beam

Lanex, phosphor closest to beam

Impact on resolution of lanex scintillator

11

Afterglow measurements

Summary

- Understanding and calibrating scintillator response is key for diagnostic design for the LhARA source
- Performed series of experiments at MC40 to characterise scintillator response
- Promising data, next stage is combining with Monte Carlo modelling to measure dE/dx quenching factor and absolute scintillation yield
- Results will be used to select scintillator detectors for deployment at SCAPA and other laser driven ion sources