

Laser-Ion Acceleration at the Centre for Advanced Laser Applications

Sonja Gerlach

September 24, 2024

Chair of Experimental Physics – Medical Physics

Laser-Ion Acceleration Group, Prof. Dr. Jörg Schreiber

Laser-ion acceleration in a nutshell

Fig: Macchi, 2017

September 24, 2024

2

Many interesting properties:

- Ultra-high peak currents
- Broad energy distribution
- multiple synchronous radiation modalities

...

. . .

Many useful applications:

- Radiobiological experiments
- Probing of ultrafast processes
- Research in astrophysics

Centre for Advanced Laser Applications (CALA)

September 24, 2024

High power lasers around the world:

September 24, 2024

Dr. Sonja Gerlach

Map:

High power lasers with Intensities > 10¹⁹ W/cm²

ATLAS 3000 @ CALA:

KyoU

2009

2020

CREIP GPI KyoU ILE OsakaU SACLA

Nominal power: 60 J, 25 fs -> 2.5 Petawatt Current power: 10 J, 25 fs -> 0.4 Petawatt Current Intensity: approx. 10²¹ W/cm²

Why high Intensities?:

 $E_{\rm ions} \propto \sqrt{I_{\rm Laser}}$ Fields: ≈100 MV / µm Trick:

Chirped Pulse Amplification (Nobel prize 2018)

Map: Courtesy of the International Committee on Ultrahigh Intensity Lasers - www.icuil.org

4

LION: Laser-ION acceleration at CALA

Wide-angle spectrometer with CMOS detector & calibration mask

September 24, 2024

Permanent magnet quadrupoles

5

Target positioning system

f/5 off-axis parabola

LION: Laser-ION acceleration at CALA

f/5 off-axis parabola

Permanent magnet quadrupoles

Target positioning system

Application plattform in air

Wide-angle spectrometer with CMOS detector & calibration mask

LION: Water leaf target

Two colliding jets form a water leaf, thickness: approx. 1 um

- + More stable ion bunch properties
- + Higher amount of shots possible
- - More challenging to operate

Beam parameters Lhara:

- 10-15 J on target, 28 fs -> 0.4 - 0.6 Petawatt
- Intensity: approx. 10²¹ W/cm²
- Rep rate: Shot on demand mode, up to approx. 0.1 Hz
- Proton cutoff Energy: 12-25 MeV

LION: Ion Focusing lens

Application plattform

- 1.8 m downstream in air
- <1 mm proton foci
- Detection: Scintillator

Permanent magnet quadrupoles

- Duplet / quadruplet available
- Magnets motorized in x/y position & rotation
- PMQ position defines transported proton energies

8

.UDWIG-AXIMILIANS

Ion detection: Ionoacoustics

- Energy & energy spread: 5 MeV - 1 GeV per nucleon, sub-MeV resolution
- Lateral position and size: sub-mm resolution
- Particle number: 10⁶-10⁹ per bunch

Additional properties:

- Radiation hard & electromagnetic pulse resistant
- Simple & cheap set-up
- Online readout & fast data analysis available

September 24, 2024

<u>I-BEAT 3D:</u> Measures 3D particle bunch properties

Ludwig Maximilians University Munich:

AG Schreiber, AG Karsch, AG Thirolf

K. Parodi+, P.R. Bolton, J. Bortfeldt, G.Dedes, W. Assmann, F. Krausz+, H. Ruhl+, A. Friedl, M. Groß, J. Szerypo, H. Wirth, O. Gosau, N. Gjotev, F. Saran, G. Schilling

Recent and ongoing collaborations: Queens University Belfast (UK): B. Dromey+ Texas University at Austin (US): M. Hegelich+ GSI Darmstadt (Germany): B. Zielbauer, V. Bagnoud+ TU Darmstadt (Germany): M. Roth+, G. Schaumann, HZDR Dresden (Germany): U. Schramm, M. Bussmann+ FSU Jena (Germany): M. Zepf, P. Hilz, + Peking University (China): W. Ma+ SIOM (China): J. Bin

