

WP2 Update: ITRF laser specification

Anticipated baseline laser requirements

Old specification (Aymar et al.)

Aymar et al.

TABLE 1 Design parameters of the components of the LhARA facility.

Parameter	Value or range	Unit
Laser driven proton and ion source		
Laser power	100	TW
Laser energy	2.5	J
Laser pulse length	25	fs
Laser rep. rate	10	Hz
Required maximum proton energy	15	MeV

New specification (CDR)

	,	
Parameter	Value	Unit
Laser Parameters		
Central wavelength	800	nm
Energy before compressor	> 18	J
Energy stability (RMS)	< 2	%
Energy stability (RMS over 12 hours)	< 5	%
Pulse Length (FWHM)	< 50	fs
Pulse length stability (RMS)	< 5	%
Rep. rate	10	$_{ m Hz}$
Contrast at 5 ps	10^{-8}	
Contrast at 10 ps	10^{-9}	
Contrast at 100 ps	10^{-10}	
Laser delivery parameters		
Energy on target	> 10	J
Focal spot size (FWHM)	< 3	$\mu\mathrm{m}$
Strehl ratio (Measured)	> 0.5	
Angle of incidence	30	0
Pointing stability	< 5	$\mu { m rad}$

Table 1.1: Envisioned laser specification for ITRF.

Reasons for the increase in laser energy - experiment

Reasons for the increase in laser energy - simulation

From Milestone Report
2:1 - from simulations
performed by T.
Dascalu

- 1 J on target, but perfect spot - corresponds to '100 TW laser' from Aymar et al
- Particle number that is far too low!
 - Current specification is
 E=15 +- 2%
 - Current angular acceptance is 15 mrad
 - le. Particles going into capture <108!
 - Need to boost numbers
 -> increase laser energy significantly
 - Would also help if bandwidth & angular acceptance could be increased

Table 3: Summary of the baseline parameters for the LhARA proton source as predicted by high-fidelity hydrodynamic and 3-D kinetic simulations (at normal laser incidence).

	Parameter	Value	Unit
Realistic	Cutoff energy	21.5	MeV
conditions	Particle number per pulse $(15.0 \pm 0.5\mathrm{MeV})$	3.1×10^8	
	RMS beam divergence (>1 MeV)	52	mrad
	RMS beam divergence (15.0 \pm 0.5 MeV)	32	mrad
	Max. emission half opening angle $(15.0 \pm 0.5\mathrm{MeV})$	141	mrad
	Emittance [‡]	0.133	mm-mrad
Optimal	Cutoff energy	45.4	MeV
$\underline{conditions}^{\dagger}$	Particle number per pulse $(15.0 \pm 0.5\mathrm{MeV})$	4.0×10^8	
	RMS beam divergence (>1 MeV)	33	mrad
	RMS beam divergence $(15.0 \pm 0.5\mathrm{MeV})$	19	mrad
	Max. emission half opening angle $(15.0 \pm 0.5\mathrm{MeV})$	99	mrad
	Emittance [‡]	0.052	mm-mrad

[†]Here, optimal conditions refer to the preplasma density profile we found to result in the maximum proton cutoff energy for the nominal laser and target parameters listed in Table 2.

[‡]RMS emittance, $\epsilon_{\text{RMS}} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle x \cdot x' \rangle}^2$

Is the laser specification reasonable?

Parameter	Value	Unit
Laser Parameters		
Central wavelength	800	nm
Energy before compressor	> 18	J
Energy stability (RMS)	< 2	%
Energy stability (RMS over 12 hours)	< 5	%
Pulse Length (FWHM)	< 50	fs
Pulse length stability (RMS)	< 5	%
Rep. rate	10	${ m Hz}$
Contrast at 5 ps	10^{-8}	
Contrast at 10 ps	10^{-9}	
Contrast at 100 ps	10^{-10}	
Laser delivery parameters		
Energy on target	> 10	J
Focal spot size (FWHM)	< 3	$\mu\mathrm{m}$
Strehl ratio (Measured)	> 0.5	
Angle of incidence	30	0
Pointing stability	< 5	$\mu { m rad}$

- Laser specification discussed with Amplitude last week
- Contrast specification may be difficult to reach - but probably would still be "good enough"
- Water cooled amplifier possible at 5 Hz, definitely cryogenic amplifier at 10 Hz -> increase 30% in cost
 - Thermal issues in e.g. compressor gratings also become increasingly difficult
- No clear route to >10 Hz in standard product range, unless laser energy is reduced significantly
- Increasing laser energy further would also be possible - cost will be correlated with laser energy

Table 1.1: Envisioned laser specification for ITRF.