Facility Design & Stage 2

William Shields

(william.shields@rhul.ac.uk)

WPB Meeting

29th October 2024

WPB.6: Tentative Goals

- Design review FFA examine issues 1-day meeting Jan 25?
 - List critical issues
- Revise FFA physics design (protons and ions) Oct 25
 - Assess ion (C6+) design Oct 25
 - Space charge assessment July 25
 - Revision FFA magnet design Dec 25
 - **Deliverable**: revised optics and magnet design that addresses critical issues raised in design review
- Engineering assessment and FFA revision April 26
 - **Deliverable**: revised engineering layouts compatible with new FFA design
- FFA Instrumentation
 - Definition of RF cavity concept Jun 25
 - Definition of Injection/Extraction magnets Jun 25
 - Beam modelling of injection/extraction Oct 25
 - Definition of diagnostic instrumentation May 26
- FFA Concept Reporting
 - Costing and engineering assessment April 26 July 26
 - (including power requirements, building requirements)
 - Review meeting and report write-up July-Sep 26 make definition of contents
- Key Decision meeting July 26; decide on feasibility of FFA

Integration Challenges

- Injection line redesign
 - Spatial constraints (FFA spiral angle, septum magnets)
 - FFA field leakage
- Proton source description
 - Parameterised distribution unmodelled features (e.g. pre-plasma)
 - Ion distributions & spectra (simulation)
- Electron spectrum
 - Co-propagating beams space charge neutralisation
 - Simulation program to establish electron beam sensitivity (GPT / RF-Track)
- PMQs for improved capture efficiency
 - Engineering challenges optimal target configuration
 - Demagnetisation, shielded / unshielded?
 - Charge neutralisation / beam dynamics
- Gabor lens field description
 - Monte Carlo transport modelling (BDSIM)
 - Confinement EM fields for low energy protons & electrons.
 - Geometry dependant

Source Description

Source Housing: Engineering

- Target &/or incident laser angle
- PMQ dimensions
 - Proximity to target, fringe field extent
 - Capture may alleviate spatial challenges

- Proximity of Gabor lens plasma field to physical device boundary.
 - Assumed 15cm space