PEPITES

Toward a Monitoring of Ultra-Short Beams From Laser-Plasma Acceleration ?

Strategic workshop on the Radiobiology of Particle Beams, Imperial College London,

8th November 2023,

Marc Verderi, Laboratoire Leprince-Ringuet, Ecole polytechnique, For the PEPITES-UltraFlash Team

Introduction

- Spoiler Alert : we will not present here results on the monitoring of ultra-short beams from laser-plasma acceleration !
 - But we will present the just starting attempt on which we are today to get such monitoring...
- Context:
 - We developed an ultra-thin beam monitor using Secondary Electron Emission (SEE) as the signal
 - Ultra-thin to minimize the perturbation to the beam
 - We were initially motivated by protontherapy, with continuous beams
 - We installed a first prototype @ ARRONAX (St Herblain/Nantes, France) in May 2022
 - Name PEPITES = Profileur à Electrons secondaires Pour Ions ThérapeutiquES
 - With the recent advent of FLASH therapy research, we realized PEPITES is a very good candidate to monitor the high intensity ("classical") FLASH beams !
 - ("classical") FLASH beams = typical O(1 100 ms) duration beams
 - But what about the extremely short beams from laser-plasma acceleration ?

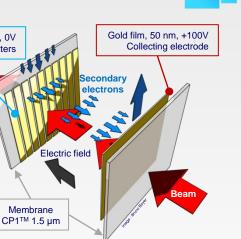
Overview

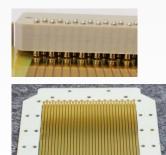
- PEPITES & related projects
- PEPITES-UltraFash : PEPITES vs Laser-Plasma Beams

PEPITES & related projects

(SEE) beam profiler SEE used for signal because: Tiny amount of material needed (~10 nm)

- Very linear (at least up to O(A) beams)
 - BTW : suitable for FLASH !
- Sensitive Area build using « Thin Film » techniques


PEPITES in a nutshell


• Ultra-thin Secondary Electron Emission

Operates in vacuum

Current version:

- 10 µm WET
- Low noise & high range read-out electronic
 - For continuous current beams
 - Designed by our CEA partner
- 2 × 32 channels (X & Y beam sampling)

Gold strips, 50 nm, 0V

Electron emitters

PEPITES @ ARRONAX Installed in May 2022 68 MeV proton beam Continuous, 17 pA Continuous, ~20 nA Peak signal : 6 nA Peak signal : 400 fA FLASH, $\sim 1 \mu A$, 10 ms Peak signal : 400 nA

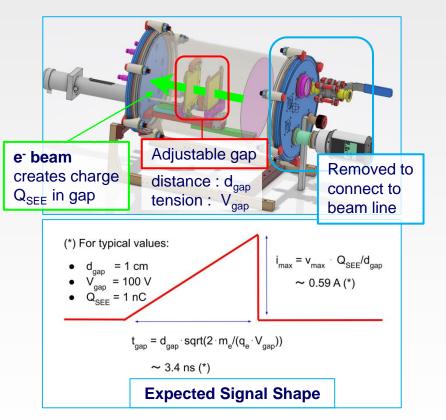
Other PEPITES activities

• SPLIF :

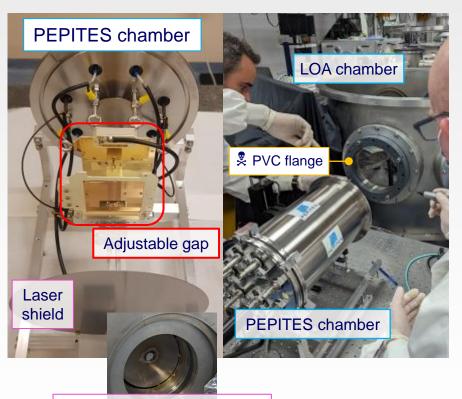
- = SimPLe moniteur pour Intensités Flash
- Comparing FLASH and conventional irradiations is almost systematic these days
 - A portable apparatus able to monitor intensities in both cases is very welcome !
- SPLIF is a simplified PEPITES
 - Takes advantage of the high linearity of SEE

- PEPITES @ CNAO :
 - CNAO (Pavia, Italy) interested in PEPITES for monitoring proton and carbon beams
 - First test beam planed this November
 - We will use a "nomad" system (copy of PEPITES @ ARRONAX, mounted in an independent vacuum chamber)
 - Anticipate that adaptation to CNAO needs will require reducing the monitor material budget
 - Long distance monitor patient (6.5 m !)

The "nomad" system, here shows in ARRONAX



PEPITES-UltraFash : PEPITES vs Laser-Plasma Beams


PEPITES & Laser-Plasma Beams ?

- PEPITES can measure ("classical") FLASH beams, thanks to SEE signal high linearity
- Is SEE signal able to withstand laser-plasma accelerated ultra-short beams ?
- Creation of project PEPITES-UltraFlash
 - Supported by French MITI
- Joint LLR LOA project
 - LOA = Laboratoire d'Optique Appliquée, Ecole polytechnique, Palaiseau, France
 - LOA operates an electron beam, generated by laserplasma, O(100 MeV)
- First & current stage :
 - Try to observe the signal
 - Design & build a simple apparatus
 - Two planes, forming an adjustable gap
 - Anticipate signal shape with Shockley–Ramo

First test beam, October 9th

- Connect LOA and PEPITES chambers with a PVC flange
 - Idea was to allow separating beam line ground and PEPITES chamber ground (= ground of readout)
 - or connecting them with a ground braid
- Beam operated as:
 - Laser : 1.5 J / bunch on target ; pulse duration = 30 fs ; 1 Hz rate ; $\lambda \sim 800$ nm
 - Gas jet : N_2 /He (2%) ; laser hits a ~ 10 µm area
- We saw... huge noise, and only that...
 - Up to 100 V amplitude !
 - Even in cables not connected to PEPITES chamber...
 - An unusual noise for LOA...
- We realized afterward this was due to the PVC flange...
 - Huge EM waves were leaking through it !
 - Spreading in the experimental area...
- Next beam campaign planed for February 2024
 - …without this !@ && "# PVC flange…
- Hoping to see the signal then !

Laser shield after test beam

Thank you !