

Nuclear diagnostics and Magnetic Resonance Imaging

Lecture 7: Magnetic Resonance Imaging: introduction

K. Long Imperial College London/STFC

K.Long@Imperial.ac.uk

K. Long

ND&MRI: Lecture 7

4 E

Outline

Magnetic resonance imaging: introduction and principles

- Introduction
- A potted history
- Quantum mechanical foundations of MRI
- Magnetisation

Section 1

Magnetic resonance imaging: introduction and principles

Sac

4 1 1 1 4

'Guilt-free' imaging

Whole-body imager, Star Trek style

Nuclear diagnostics and X-ray imaging:

- Image constructed using ionising radiation
- Necessarily delivers dose to patient
- Dose implies risk of initiating disease

Magnetic resonance imaging (MRI):

- Image generated by exploiting magnetic moment of H nuclei
- Patient immersed in magnetic field
- No permanent harmful effects reported

Nuclear magnetic moment

Proton (and neutron) magnetic moment:

- Nucleons each have spin of $\frac{1}{2}$
- Magnetic moment generated by nuclear charge Contributions to nuclear spin arise from quarks and gluons. Quantitative explanation of nuclear magnetic moment is an active area of research
- For NMR and MRI critical point is that the magnetic moment, μ , is related to the nuclear spin, **s** by:

$$oldsymbol{\mu} = \gamma \mathbf{s}$$

where γ is the "gyromagnetic" ratio

Nuclear magnetic resonance

Effect of uniform magnetic field **B**:

• **B** provides "quantisation axis":

 \Rightarrow nuclear dipoles align with magnetic field

- For proton spin is $\frac{1}{2}$, so only two states: Spin "up" and spin "down"
- Energy splitting; 2 energy levels:
 - Lower energy level has magnetic moment parallel to magnetic field
 - Higher energy level has magnetic moment anti-parallel to magnetic field
- Resonance:
 - Call energy splitting ΔE
 - Transitions between the two energy levels cause absorption or emission of electromagnetic (em) radiation for which $\Delta E = h\nu$
 - $\bullet\,$ Resonance occurs when em radiation of frequency ν is injected

イモトイモト

Magnetic resonance imaging

Magnetic resonance imaging (MRI) exploits this resonance

Steps:

- Apply uniform magnetic field, align proton (¹H) spins
- Apply radiation, at exactly ν , to cause transitions between "spin up" & "spin down" states
- Turn off the radiation ... and ...
- $\bullet\,$ "Listen" for radiation at exactly ν as the spins realign

Brilliant! Simple principle and elegant technique. Now exploited in exquisitely sophisticated imaging systems.

A (10) × (10)

The physical principles

1938: I. Rabi: Discovered nuclear magnetic resonance Nobel Prize 1944

1946: F. Bloch & E. Purcell: Developed methods that allow precision methods using NMR Nobel Prize 1952

1955/56: E. Odeblad & G. Lindström: Applied NMR to living cells from animal tissue

1968: J.A. Jackson and W.H. Langham: First NMR measurements from living animals

イロト イヨト イヨト

A potted history

Cancerous and normal cells differ

Relaxation times that characterise recovery of ground-state magnetisation shown to differ between normal and tumour cells

Raymond Damadian

Tumor Detection by Nuclear Magnetic Resonance Author(s): Raymond Damadian Source: Science, New Series, Vol. 171, No. 3976 (Mar. 19, 1971), pp. 1151-1153 Published by: American Association for the Advancement of Science Stable URL: https://www.jstor.org/stable/1730608 Accessed: 01-03-2020 09:22 UTC

REFERENCES

Linked references are available on JSTOR for this article: https://www.jstor.org/stable/1730608?seq=1&cid=pdf-reference#references tab contents You may need to log in to JSTOR to access the linked references.

イロト イロト イヨト イヨト

A potted history

Early proposals for MRI scanners

Alexander Ganssen: patent 1967

Raymond Damadian; patent 1972

イロト イボト イヨト イヨ

Spatial localisation using magnetic-field gradients

Superimpose field gradient on main uniform magnetic field. Incident em radiation at frequency ν only resident in a particular location in subject

Paul Lauterbur

Nature Vol. 242 16 March 1973

Fig. 1 Relationship between a three-dimensional object, its twodimensional projection along the Y-axis, and four one-dimensional projections at 45° intervals in the XZ-plane. The arrows indicate the gradient directions.

ヘロト 人間ト くほと くち

Fig. 2 Proton nuclear magnetic resonance zeugmatogram of the object described in the text, using four relative orientations of object and gradients as diagrammed in Fig. 1.

ND&MRI: Lecture 7

Rapid, "snap-shot" MRI

Use of "echo planar imaging" to allow fast "snap-shot" imaging required active screening of fields created by currents induced in cryostat walls

Peter Mansfield

P. Mansfield, Nobel Lecture 2003

Figure 2. Photograph of a doubly screened active magnetic shielded gradient coil set for insertion in the super-conductive magnet of Figure 1.

Figure 3. Diagram of a slice through the mediastinum showing the two lung fields and heart mass, also shown is the Fourier transform of this real-space image to the k-space map. (Reproduced with permission from M K Stehling, R Turner and P Mansfield, SCIENCE 253, 45-50 (1991).) \leftarrow $\square \models \bigcirc (\square \models) \bigcirc (\square \models) \bigcirc (\square \models)$

ND&MRI: Lecture 7

NMR zeugmatography

1975: A. Kumar, D. Welti, R. Ernst

Application of Fourier techniques to the reconstruction of images

Journal of Magnetic Resonance, Vol 18, P 69-83(1975)

zeug·ma·tog·ra·phy (zūg'mă-tog'ră-fē), Term coined by Lauterbur in 1972 for the joining of a magnetic field and spatially defined radiofrequency field gradients to generate a two-dimensional display of proton density and relaxation times in tissues, the first nuclear magnetic resonance image.

・ロト ・ 同ト ・ ヨト ・ ヨ

State of the art

イロト イヨト イヨト

590

Э

Theoretical description; a hybrid of quantum and classical

Nuclear magnetic resonance & MRI are both inherently quantum mechanical effects:

- Signal is generated by manipulating the *spins* of hydrogen nuclei:
 - Spin is postulated to explain hyperfine structure, Stern-Gerlach experiment, ...
 - Understood theoretically through the symmetries of space and time
- Magnetic moment of proton, μ , is related to the proton spin, **s**, by:

$$oldsymbol{\mu} = \gamma \mathbf{s}$$

where γ is the "gyromagnetic ratio"

Hybrid, quantum/classical treatment:

- Quantum mechanics: energy splitting and population in ground and excited state
- Classical: magnetisation vector, its precession, and the manipulation of the magnetisation vector to generate the signals used for imaging

Interaction of nuclear magnetic dipole with uniform magnetic field

The contribution, δU , to the potential energy of a proton immersed in a magnetic field, **B**, is given by:

$$\delta \mathcal{U} = - \mathbf{B} \cdot oldsymbol{\mu}$$

Lets consider a proton which, in the absence of a magnetic field has energy E. Applying the magnetic field introduces δU into the Schrödinger equation resulting in a splitting of the proton energy level such that $E \to E'$ given by:

$$E' = E \pm E_{m_s}$$

where

$$E_{m_s} = -m\gamma\hbar B_0$$

where *m* is the quantum number associated with the component of the proton spin parallel to **B**, \hbar is Planck's constant divided by 2π , and B_0 is the magnitude of **B** For the proton:

$$m_s = \pm \frac{1}{2}$$

K. Long

・ロト ・回ト ・ヨト

Larmor equation

$$\Delta E$$
, splitting between two levels with $m_s=\pmrac{1}{2}$: $\Delta E=\gamma\hbar B_0$

Planck's law relates energy splitting to the angular frequency, ω , of the radiation required to excite the transition, therefore:

 $\Delta E = \hbar \omega$

Writing ω in terms of γ and B_0 yields the Larmor equation:

$$\omega = \gamma B_0$$

Gyromagnetic ratios of some nuclei

Definition of gyromagnetic ration, γ : The gyromagnetic ratio, γ , of a particle or system is the ratio of its magnetic dipole moment to its angular momentum

For charged body of charge q, mass m rotating about an axis of symmetry:

$$\gamma = \frac{qe}{2m}$$

where e is the magnitude of the charge on the electron

For proton, q = 1, $m = m_p$, the proton mass.

 γ is sometimes used instead of γ :

$$\gamma = \frac{\gamma}{2\pi}$$

nucleus	γ (rad MHz T ⁻¹)	γ = γ / 2 π
¹ H	267.513	42.576
² H	41.065	6.536
³ He	203.789	32.434
7Li	103.962	16.546
¹³ C	67.262	10.705
¹⁴ N	19.331	3.077
¹⁵ N	27.116	-4.316
¹⁷ O	36.264	5.772
¹⁹ F	251.662	40.053
²³ Na	70.761	11.262
²⁷ AI	69.763	11.103
³¹ P	108.291	17.235
⁵⁷ Fe	8.681	1.382
⁶³ Cu	71.118	11.319
⁶⁷ Zn	16.767	2.669
¹²⁹ Xe	73.997	11.777

Examples

Larmor equation: $\omega = \gamma B_0 \Rightarrow \nu = \gamma B_0$ For hydrogen nucleus, ¹H, $\gamma = 42.58 \text{ MHz/T}$

What is the resonance frequency for ${}^{1}H$ when:

- $B_0 = 1.5 \text{ T}$?
- $B_0 = 3.0 \text{ T}$?

What are the corresponding values for the energy splittings $\Delta E = h\nu$, where *h* is Planck's constant?

イロト 不得 トイヨト イヨト 二日

Populations in the two spin states

¹H in tissue in thermal equilibrium, so, partition between the populations in the two spin states follows the Boltzmann distribution:

$$\frac{N_{+}}{N_{-}} = \exp\left(-\frac{\Delta E}{k_{\rm B}T}\right)$$

where N_+ and N_- are the number of ¹H in $+\Delta E$ and $-\Delta E$ states respectively, $k_{\rm B}$ is Boltzmann's constant, and T is the temperature For the human body, $k_{\rm B}T \approx 25.7$ meV, so:

$$\Delta E << k_{
m B}T$$

Therefore, expanding the exponential and rearranging:

$$N_{-} - N_{+} \approx N_{S} \frac{\Delta E}{2k_{\rm B}T}$$

ND&MRI: Lecture 7

Magnetisation

Substituting for ΔE

$$N_{-} - N_{+} \approx N_{S} \frac{\Delta E}{2k_{\rm B}T} = N_{S} \frac{\gamma h B_{0}}{4\pi k_{\rm B}T}$$

For $B_0 = 1.5$ T:

$$\begin{array}{rcl} \frac{N_{-}-N_{+}}{N_{5}} &\approx& \frac{42.58 \times 10^{6} \times 6.6 \times 10^{-34} \times 1.5}{2 \times 1.38 \times 10^{-23} \times 300} \\ &\approx& 4.5 \times 10^{-6} \end{array}$$

i.e. only 4.5 in a million protons in the body are available for activation in MRI at $B_0 = 1.5\,\mathrm{T}$

э

Sac

イロト イポト イヨト イヨト

Bulk magnetisation is measurable

Population-density "mismatch" of $\approx 3\,\rm ppm$ per Tesla arises due to fact that energy splitting is small compared to $k_{\rm B}T$

Bulk magnetisation still measurable because 1 gram of water contains 10²² ¹H

イロト 不得下 イヨト イヨト

Section 2

Lecture summary

K. Long

Э

Sac

イロト イヨト イヨト

Summary

MRI technique is based on manipulation of ¹H spins; a quantum-mechanical effect

MRI can be described using a hybrid quantum-mechanical/classical treatment

Application of magnetic field B_0 causes splitting ΔE between the two spin states of an ¹H nucleus:

$$\Delta E = \hbar \omega$$

where ω is the Larmor frequency:

$$\omega = \gamma B_0$$

Population of lower energy state of ${}^{1}\text{H}$ is \approx 3 ppm per Tesla greater than higher energy state

Sac

スタン イント・イント