Nuclear diagnostics and Magnetic Resonance Imaging
Lecture 7: Magnetic Resonance Imaging: introduction

K. Long
Imperial College London/STFC
K.Long@Imperial.ac.uk

Outline

(1) Magnetic resonance imaging: introduction and principles

- Introduction
- A potted history
- Quantum mechanical foundations of MRI
- Magnetisation
(2) Lecture summary

Section 1

Magnetic resonance imaging: introduction and principles

'Guilt-free' imaging

Whole-body imager, Star Trek style

Nuclear diagnostics and X-ray imaging:

- Image constructed using ionising radiation
- Necessarily delivers dose to patient
- Dose implies risk of initiating disease

Magnetic resonance imaging (MRI):

- Image generated by exploiting magnetic moment of H nuclei
- Patient immersed in magnetic field
- No permanent harmful effects reported

Nuclear magnetic moment

Proton (and neutron) magnetic moment:

- Nucleons each have spin of $\frac{1}{2}$
- Magnetic moment generated by nuclear charge

Contributions to nuclear spin arise from quarks and gluons. Quantitative explanation of nuclear magnetic moment is an active area of research

- For NMR and MRI critical point is that the magnetic moment, $\boldsymbol{\mu}$, is related to the nuclear spin, s by:

$$
\boldsymbol{\mu}=\gamma \mathbf{s}
$$

where γ is the "gyromagnetic" ratio

Nuclear magnetic resonance

Effect of uniform magnetic field \mathbf{B} :

- B provides "quantisation axis":
\Rightarrow nuclear dipoles align with magnetic field
- For proton spin is $\frac{1}{2}$, so only two states:

Spin "up" and spin "down"

- Energy splitting; 2 energy levels:
- Lower energy level has magnetic moment parallel to magnetic field
- Higher energy level has magnetic moment anti-parallel to magnetic field
- Resonance:
- Call energy splitting ΔE
- Transitions between the two energy levels cause absorption or emission of electromagnetic (em) radiation for which $\Delta E=h \nu$
- Resonance occurs when em radiation of frequency ν is injected

Magnetic resonance imaging

Magnetic resonance imaging (MRI) exploits this resonance
Steps:

- Apply uniform magnetic field, align proton $\left({ }^{1} \mathrm{H}\right)$ spins
- Apply radiation, at exactly ν, to cause transitions between "spin up" \& "spin down" states
- Turn off the radiation and ...
- "Listen" for radiation at exactly ν as the spins realign

Brilliant! Simple principle and elegant technique. Now exploited in exquisitely sophisticated imaging systems.

The physical principles

1938: I. Rabi: Discovered nuclear magnetic resonance
Nobel Prize 1944

1946: F. Bloch \& E. Purcell: Developed methods that allow precision methods using NMR Nobel Prize 1952

1955/56: E. Odeblad \& G. Lindström: Applied NMR to living cells from animal tissue

1968: J.A. Jackson and W.H. Langham: First NMR measurements from living animals

Cancerous and normal cells differ

Relaxation times that characterise recovery of ground-state magnetisation shown to differ between normal and tumour cells

Raymond Damadian

```
Tumor Detection by Nuclear Magnetic Resonance
Author(s): Raymond Damadian
Source: Science, New Series, Vol. 171, No. }3976\mathrm{ (Mar. 19, 1971), pp. 1151-1153
Published by: American Association for the Advancement of Science
Stable URL: https://www.jstor.org/stable/1730608
Accessed: 01-03-2020 09:22 UTC
```


REFERENCES

```
Linked references are available on JSTOR for this article:
https://www.jstor.org/stable/1730608?seq=1\&cid=pdf-reference\#references_tab_contents You may need to \(\log\) in to JSTOR to access the linked references.
```


Early proposals for MRI scanners

Alexander Ganssen; patent 1967
Elektromagnetische Hochfrequenzspule für Diagnostik-Einrichtung

Raymond Damadian; patent 1972

Spatial localisation using magnetic-field gradients

Superimpose field gradient on main uniform magnetic field. Incident em radiation at frequency ν only resident in a particular location in subject

Paul Lauterbur
Nature Vol. 24216 March 1973

Fig. 1 Relationship between a three-dimensional object, its twoFig. 1 Relationship
dimensional projetion along the Y -axis, and four one-dimen-
sional projections at 45° intervals in the XZ -plane. The arrows sional projections at 45° intervals in the XZ-plane
indicate the gradient directions.

Fig. 2 Proton nuclear magnetic resonance ezeugmatogram of the object described in the text, using four relative orientatio
object and gradients as diagrammed in Fig. 1.

Rapid, "snap-shot" MRI

Use of "echo planar imaging" to allow fast "snap-shot" imaging required active screening of fields created by currents induced in cryostat walls

Peter Mansfield

P. Mansfield, Nobel Lecture 2003

Figure 2. Photograph of a doubly screened active magnetic shielded gradient coil set for insertion in the super-conductive magnet of Figure 1.

Figure 3. Diagram of a slice through the mediastinum showing the two lung fields and heart Figure 3. Diagram of a slice through the mediastinum showing the two lung fields and heart
mass, also shown is the Fourier transform of this real-space image to the k -space map
(Reproduced with permission from M K Stehling, R Turner and P Mansfield, SCIENCE 253, 43-50 (1991).)

NMR zeugmatography

1975: A. Kumar, D. Welti, R. Ernst

Application of Fourier techniques to the reconstruction of images

Journal of Magnetic Resonance, Vol 18, P 69-83(1975)
zeug•ma•tog•ra•phy (zūg'mă-tog'ră-fē), Term coined by Lauterbur in 1972 for the joining of a magnetic field and spatially defined radiofrequency field gradients to generate a two-dimensional display of proton density and relaxation times in tissues, the
 first nuclear magnetic resonance image.

State of the art

Theoretical description; a hybrid of quantum and classical

Nuclear magnetic resonance \& MRI are both inherently quantum mechanical effects:

- Signal is generated by manipulating the spins of hydrogen nuclei:
- Spin is postulated to explain hyperfine structure, Stern-Gerlach experiment, ...
- Understood theoretically through the symmetries of space and time
- Magnetic moment of proton, $\boldsymbol{\mu}$, is related to the proton spin, \mathbf{s}, by:

$$
\boldsymbol{\mu}=\gamma \mathbf{s}
$$

where γ is the "gyromagnetic ratio"

Hybrid, quantum/classical treatment:

- Quantum mechanics: energy splitting and population in ground and excited state
- Classical: magnetisation vector, its precession, and the manipulation of the magnetisation vector to generate the signals used for imaging

Interaction of nuclear magnetic dipole with uniform magnetic field

The contribution, $\delta \mathcal{U}$, to the potential energy of a proton immersed in a magnetic field, \mathbf{B}, is given by:

$$
\delta \mathcal{U}=-\mathbf{B} \cdot \boldsymbol{\mu}
$$

Lets consider a proton which, in the absence of a magnetic field has energy E. Applying the magnetic field introduces $\delta \mathcal{U}$ into the Schrödinger equation resulting in a splitting of the proton energy level such that $E \rightarrow E^{\prime}$ given by:

$$
E^{\prime}=E \pm E_{m_{s}}
$$

where

$$
E_{m_{s}}=-m \gamma \hbar B_{0}
$$

where m is the quantum number associated with the component of the proton spin parallel to \mathbf{B}, \hbar is Planck's constant divided by 2π, and B_{0} is the magnitude of \mathbf{B} For the proton:

$$
m_{s}= \pm \frac{1}{2}
$$

Larmor equation

ΔE, splitting between two levels with $m_{s}= \pm \frac{1}{2}$:

$$
\Delta E=\gamma \hbar B_{0}
$$

Planck's law relates energy splitting to the angular frequency, ω, of the radiation required to excite the transition, therefore:

$$
\Delta E=\hbar \omega
$$

Writing ω in terms of γ and B_{0} yields the Larmor equation:

$$
\omega=\gamma B_{0}
$$

Gyromagnetic ratios of some nuclei

Definition of gyromagnetic ration, γ :
The gyromagnetic ratio, γ, of a particle or system is the ratio of its magnetic dipole moment to its angular momentum

For charged body of charge q, mass m rotating about an axis of symmetry:

$$
\gamma=\frac{q e}{2 m}
$$

where e is the magnitude of the charge on the electron
For proton, $q=1, m=m_{p}$, the proton mass.
\nsim is sometimes used instead of γ :

$$
\psi=\frac{\gamma}{2 \pi}
$$

nucleus	$\stackrel{\mathrm{V}}{\left(\mathrm{rad} \mathrm{MHz} \mathrm{~T}^{-1}\right)}$	$\forall=Y / 2 \pi$
${ }^{1} \mathrm{H}$	267.513	42.576
${ }^{2} \mathrm{H}$	41.065	6.536
${ }^{3} \mathrm{He}$	203.789	32.434
${ }^{7} \mathrm{Li}$	103.962	16.546
${ }^{13} \mathrm{C}$	67.262	10.705
${ }^{14} \mathrm{~N}$	19.331	3.077
${ }^{15} \mathrm{~N}$	27.116	-4.316
${ }^{17} \mathrm{O}$	36.264	5.772
${ }^{19} \mathrm{~F}$	251.662	40.053
${ }^{23} \mathrm{Na}$	70.761	11.262
${ }^{27} \mathrm{Al}$	69.763	11.103
${ }^{31} \mathrm{P}$	108.291	17.235
${ }^{57} \mathrm{Fe}$	8.681	1.382
${ }^{63} \mathrm{Cu}$	71.118	11.319
${ }^{67} \mathrm{Zn}$	16.767	2.669
${ }^{129} \mathrm{Xe}$	73.997	11.777

Examples

Larmor equation: $\quad \omega=\gamma B_{0} \quad \Rightarrow \quad \nu=\psi B_{0}$
For hydrogen nucleus, ${ }^{1} \mathrm{H}, \nleftarrow=42.58 \mathrm{MHz} / \mathrm{T}$
What is the resonance frequency for ${ }^{1} \mathrm{H}$ when:

- $B_{0}=1.5 \mathrm{~T}$?
- $B_{0}=3.0 \mathrm{~T}$?

What are the corresponding values for the energy splittings $\Delta E=h \nu$, where h is Planck's constant?

Populations in the two spin states

${ }^{1} \mathrm{H}$ in tissue in thermal equilibrium, so, partition between the populations in the two spin states follows the Boltzmann distribution:

$$
\frac{N_{+}}{N_{-}}=\exp \left(-\frac{\Delta E}{k_{\mathrm{B}} T}\right)
$$

where N_{+}and N_{-}are the number of ${ }^{1} \mathrm{H}$ in $+\Delta E$ and $-\Delta E$ states respectively, k_{B} is Boltzmann's constant, and T is the temperature For the human body, $k_{\mathrm{B}} T \approx 25.7 \mathrm{meV}$, so:

$$
\Delta E \ll k_{\mathrm{B}} T
$$

Therefore, expanding the exponential and rearranging:

$$
N_{-}-N_{+} \approx N_{S} \frac{\Delta E}{2 k_{\mathrm{B}} T}
$$

Magnetisation

Substituting for ΔE

$$
N_{-}-N_{+} \approx N_{S} \frac{\Delta E}{2 k_{\mathrm{B}} T}=N_{S} \frac{\gamma h B_{0}}{4 \pi k_{\mathrm{B}} T}
$$

For $B_{0}=1.5 \mathrm{~T}$:

$$
\begin{aligned}
\frac{N_{-}-N_{+}}{N_{S}} & \approx \frac{42.58 \times 10^{6} \times 6.6 \times 10^{-34} \times 1.5}{2 \times 1.38 \times 10^{-23} \times 300} \\
& \approx 4.5 \times 10^{-6}
\end{aligned}
$$

i.e. only 4.5 in a million protons in the body are available for activation in MRI at $B_{0}=1.5 \mathrm{~T}$

Bulk magnetisation is measurable

Population-density "mismatch" of $\approx 3 \mathrm{ppm}$ per Tesla arises due to fact that energy splitting is small compared to $k_{\mathrm{B}} T$

Bulk magnetisation still measurable because 1 gram of water contains $10^{22}{ }^{1} \mathrm{H}$

Section 2

Lecture summary

Summary

MRI technique is based on manipulation of ${ }^{1} \mathrm{H}$ spins; a quantum-mechanical effect
MRI can be described using a hybrid quantum-mechanical/classical treatment
Application of magnetic field B_{0} causes splitting ΔE between the two spin states of an ${ }^{1} \mathrm{H}$ nucleus:

$$
\Delta E=\hbar \omega
$$

where ω is the Larmor frequency:

$$
\omega=\gamma B_{0}
$$

Population of lower energy state of ${ }^{1} \mathrm{H}$ is $\approx 3 \mathrm{ppm}$ per Tesla greater than higher energy state

