

December 28, 2020

Nuclear medicine Week 1; Lecture 3; Section 2: Gamma camera

K. Long (k.long@imperial.ac.uk) Department of Physics, Imperial College London/STFC R. McLauchlan (<u>ruth.mclauchlan@nhs.net</u>)

Radiation Physics & Radiobiology Department, Imperial College Healthcare NHS Trust

Section 2

Gamma camera

K. Long & R. McLauchlan

ND&MRI: Wk 1; Lctr 3; Sctn 2: γ -camera

Centre for the Clinical Application of Particles 2/9

э

Sac

イロト イヨト イヨト イヨト

The Gamma camera

"Imaging collimator" defines direction of detected $\gamma {\rm s}$

• Forms projected image on scintillator

Large, single-crystal Nal scintillator coupled to a clear plastic or glass light guide

Light detected using PMT array

PMT readout by pulse-height-sensitive electronics; events are recorded if energy falls within the desired window

Many events are required for an image to be built up:

- *x*, *y* intensity map;
- $\bullet~\gamma\text{-energy spectrum}$
- Possibly also the time evolution of the image

Example image

Example whole-body image taken using ^{99m}Tc-MDP

3

Sac

4 E

< ⊡

Resolution

Contributions to intrinsic resolution:

- Detector thickness (geometrical effect)
- Compton scattering on atomic electron:
 - $\gamma_i + e \rightarrow \gamma_o + e'$; γ_o not parallel to γ_i
 - Small effect: < 10% of $\gamma {\rm s}$ displaced by > 2.5 mm in 6.4 mm thick detector
- Statistical fluctuations in photon count:
 - Scintillation photons & photoelectrons Poisson distributed
 - If N photoelectrons expected, variance of number detected will be N
 - $\bullet\,$ Consequence is that distribution of $\gamma {\rm s}$ over surface of detector will fluctuate
- Intrinsic resolution degrades with decreasing E_{γ} :
 - $\bullet\,$ Fewer scintillation photons expected for low-energy $\gamma {\rm s}$
 - So, RMS of fluctuations ($\propto \frac{\sqrt{N}}{N}$) grows as E_{γ} decreases

Intrinsic spatial resolution for 6.3 mm thick Nal(TI) crystal.

Thallium (TI) doping improves light production efficiency through recombination of electrons/holes at dopant site in lattice.

O > <
 O >

Trade off between resolution and efficiency

K. Long & R. McLauchlan

ND&MRI: Wk 1; Lctr 3; Sctn 2: γ -camera

Decay γ selection

Compton-scattered photons have an energy lower than that of the decay photons. Atomic transitions from electrons excited in the lead shield or the Nal detector also contribute low-energy photons.

Exploit energy resolution to select γ s that emerge without scattering:

- Energy resolution $\propto \frac{1}{E_{\gamma}}$.
- Typical energy resolution, $\frac{\Delta E_{\gamma}}{E_{\gamma}}$, is $\sim 10\%$ at 140 keV.

Types of event

- A: Good event
- B: Scatter in detector:
 - Full energy is recorded, but
 - Position information is distorted
- C: Scatter in patient
 - γ arriving at detector has reduced energy, but may still fall within the detection window
 - Unwanted event
- D: Septal penetration
 - Unwanted event

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Summary of section 2

The gamma camera exploits a large Nal crystal viewed using and array of photomultipliers to generate an image of the take-up of a gamma-emitting radionuclide

A collimator is used to define "pointing" accuracy

The intrinsic resolution of the gamma camera is related to the thickness of the scintillator; it improves with photon energy

Selection of high-energy photons reduces the contribution from photons that have undergone Compton scattering

イロト 不得下 イヨト イヨト