Magnetic Resonance Imaging

Week 4; Lecture 8; Section 2: Rotating the magnetisation

K. Long (k.long@imperial.ac.uk)

Department of Physics, Imperial College London/STFC R. McLauchlan (ruth.mclauchlan@nhs.net)

Radiation Physics \& Radiobiology Department, Imperial College Healthcare NHS Trust

Section 2

Rotating the magnetisation

First, a static example

Consider magnetisation \mathbf{M} parallel to z axis and \mathbf{B} parallel to the x axis, as shown

Torque, $\mathbf{M} \times \mathbf{B}$, is therefore parallel to the y axis

Net result is that \mathbf{M} will precess around the x axis towards the y axis

This is what is done in MRI ...

Rotating the magnetisation vector in MRI; principle

Main field, \mathbf{B}_{0}, produced with solenoid

Induces magnetisation \mathbf{M} parallel to \mathbf{B}_{0}

To rotate \mathbf{M} away from \mathbf{B}_{0} require magnetic field in transverse (x, y) plane

Call the field in the x, y plane \mathbf{B}_{1}; can be produced with a variety of coil arrangements, e.g. dipole or, more efficient, a "bird cage"

To cause \mathbf{M} to precess require that \mathbf{M} oscillates at the Larmor frequency, ω. I.e. require RF magnetic field \mathbf{B}_{1}

Rotating the magnetisation vector in MRI; mathematics

Take \mathbf{B}_{1} to be "plane polarised" in x, y such that $B_{1_{x}}=B_{1} \cos (\omega t+\alpha)$ and $B_{1_{y}}=B_{1} \sin (\omega t+\beta) ; \alpha$ and β are phases
\mathbf{B}_{1} can be rewritten in terms of two circularly polarised fields:

$$
B_{1_{a c}}=\frac{B_{1}}{2} ; \phi_{a c}=\omega t+\alpha^{\prime}
$$

$$
B_{1_{c}}=\frac{B_{1}}{2} ; \phi_{c}=\omega t+\beta^{\prime}
$$

Rotating the magnetisation vector in MRI

One of the two counter rotating fields will rotate in the same direction as the nuclear precession

In the frame that is co-rotating with the precession of the net magnetisation vector the magnetic field will appear stationary in the transverse (x, y) plane. Call the co-rotating field B_{1}^{+}
B_{1}^{+}is equal to either $B_{1_{a c}}$ or $B_{1_{c}}$ depending on the direction of \mathbf{B}_{0}
The stationary field will therefore cause \mathbf{M} to precess about a rotating axis in the (x, y) plane
The net result is that \mathbf{M} can be rotated into the x, y plane where it will continue to precess
The precession of \mathbf{M} in the x, y plane gives a detectable RF signal

Rotating the magnetisation vector in MRI

\mathbf{M} is initially parallel to B_{0}

(a) Laboratory Frame of Reference

(b) Rotating Frame of Reference

The flip angle

The flip angle, α, is proportional to the magnitude and duration of the RF pulse:

$$
\alpha=\neq B_{1} t_{P}
$$

where t_{P} is the duration of the RF pulse
90° pulse rotates magnetisation into transverse plane where it continues to precess
Effect of 90° RF Pulse

Example: calculating the duration of a 90° pulse

RF transverse magnetic field pulse is applied to rotate \mathbf{M}

The magnitude of B_{1} is $10 \mu \mathrm{~T}$ (i.e. $10^{-5} \mathrm{~T}$)

At what rate with the \mathbf{M} rotate away from the \mathbf{B}_{0} axis?

How long will it take for the flip angle to reach 90° ?

Example: calculating the duration of a 90° pulse

Half an answer ...

The magnitude of B_{1} is $10 \mu \mathrm{~T}$ (i.e. $10^{-5} \mathrm{~T}$)

At what rate with the \mathbf{M} rotate away from the \mathbf{B}_{0} axis?
It will rotate at the Larmor frequency, f_{1} arising from the field B_{1}, i.e. $f_{1}=\neq B_{1}$

How long will it take for the flip angle to reach 90° ?
The angle can be obtained by solving the equation:

$$
\begin{gathered}
\frac{1}{4}=\psi B_{1} t_{P}^{90^{\circ}} \text { for } t_{P}^{90^{\circ}} \\
\text { or } \frac{\pi}{2}=\gamma B_{1} t_{P}^{90^{\circ}}
\end{gathered}
$$

Summary of section 2

Net magnetisation of ${ }^{1} \mathrm{H}$ spins caused to rotate using plane-polarised, time-varying magnetic field in the x, y plane

Precession of rotated net-magnetisation vector gives rise to RF signal which can be detected

Measurement of the RF signal from the precession of rotated net-magnetisation vector is the basis of MRI

