

January 2, 2021

# Magnetic Resonance Imaging Week 4; Lecture 8; Section 2: Rotating the magnetisation

#### K. Long (<u>k.long@imperial.ac.uk</u>) Department of Physics, Imperial College London/STFC R. McLauchlan (<u>ruth.mclauchlan@nhs.net</u>)

Radiation Physics & Radiobiology Department, Imperial College Healthcare NHS Trust

#### Section 2

### Rotating the magnetisation

Sac

イロト イボト イヨト イヨ

#### First, a static example



Consider magnetisation **M** parallel to z axis and **B** parallel to the x axis, as shown

Torque,  $\mathbf{M} \times \mathbf{B}$ , is therefore parallel to the y axis

Net result is that **M** will precess around the x axis towards the y axis

This is what is done in MRI ....

# Rotating the magnetisation vector in MRI; principle

Main field,  $\mathbf{B}_0$ , produced with solenoid



Induces magnetisation  $\boldsymbol{M}$  parallel to  $\boldsymbol{B}_0$ 

To rotate **M** away from **B**<sub>0</sub> require magnetic field in transverse (x, y) plane

Call the field in the x, y plane **B**<sub>1</sub>; can be produced with a variety of coil arrangements, e.g. dipole or, more efficient, a "bird cage"



To cause **M** to precess require that **M** oscillates at the Larmor frequency,  $\omega$ . I.e. require RF magnetic field **B**<sub>1</sub>

### Rotating the magnetisation vector in MRI; mathematics

Take **B**<sub>1</sub> to be "plane polarised" in x, y such that  $B_{1_x} = B_1 \cos(\omega t + \alpha)$  and  $B_{1_y} = B_1 \sin(\omega t + \beta)$ ;  $\alpha$  and  $\beta$  are phases

 $\mathbf{B}_1$  can be rewritten in terms of two circularly polarised fields:



# Rotating the magnetisation vector in MRI

One of the two counter rotating fields will rotate in the same direction as the nuclear precession

In the frame that is co-rotating with the precession of the net magnetisation vector the magnetic field will appear stationary in the transverse (x, y) plane. Call the co-rotating field  $B_1^+$ 

 $B_1^+$  is equal to either  $B_{1_{ac}}$  or  $B_{1_c}$  depending on the direction of  $\mathbf{B}_0$ 

The stationary field will therefore cause **M** to precess about a rotating axis in the (x, y) plane

The net result is that **M** can be rotated into the x, y plane where it will continue to precess

The precession of  $\mathbf{M}$  in the x, y plane gives a detectable RF signal

### Rotating the magnetisation vector in MRI



**M** is initially parallel to  $\mathbf{B}_0$ 

(a) Laboratory Frame of Reference

#### (b) **Rotating Frame of Reference**

Sac

# The flip angle

The flip angle,  $\alpha$ , is proportional to the magnitude and duration of the RF pulse:

 $\alpha = \gamma B_1 t_P$ 

where  $t_P$  is the duration of the RF pulse

 $90^\circ$  pulse rotates magnetisation into transverse plane where it continues to precess

Effect of 90° RF Pulse



# Example: calculating the duration of a $90^\circ$ pulse

RF transverse magnetic field pulse is applied to rotate  ${\bf M}$ 

```
The magnitude of B_1 is 10 \muT (i.e. 10<sup>-5</sup> T)
```

At what rate with the  $\boldsymbol{\mathsf{M}}$  rotate away from the  $\boldsymbol{\mathsf{B}}_0$  axis?

How long will it take for the flip angle to reach  $90^{\circ}$ ?

(김 글 대) 김 글 대

# Example: calculating the duration of a $90^{\circ}$ pulse

Half an answer . . .

```
The magnitude of B_1 is 10 \muT (i.e. 10<sup>-5</sup> T)
```

At what rate with the **M** rotate away from the **B**<sub>0</sub> axis? It will rotate at the Larmor frequency,  $f_1$  arising from the field  $B_1$ , i.e.  $f_1 = \gamma B_1$ 

How long will it take for the flip angle to reach 90°? The angle can be obtained by solving the equation:

$$rac{1}{4}=\gamma B_1 t_P^{90^\circ} ext{ for } t_P^{90^\circ}$$
 or  $rac{\pi}{2}=\gamma B_1 t_P^{90^\circ}$ 

4 E N

# Summary of section 2

Net magnetisation of <sup>1</sup>H spins caused to rotate using plane-polarised, time-varying magnetic field in the x, y plane

Precession of rotated net-magnetisation vector gives rise to RF signal which can be detected

Measurement of the RF signal from the precession of rotated net-magnetisation vector is the basis of MRI

イロト 不得下 イヨト イヨト