

December 30, 2021

Magnetic Resonance Imaging Lecture 3; Section 1: Encoding spatial information: 2

K. Long (k.long@imperial.ac.uk) Department of Physics, Imperial College London/STFC

K. Long & R. McLauchlan

PhMInRT: Lctr 03; Sctn 1: Spatial encoding: 2

Centre for the Clinical Application of Particles 1/8

Section 1

Encoding spatial information into net magnetisation

K. Long & R. McLauchlan

PhMInRT: Lctr 03; Sctn 1: Spatial encoding: 2

Centre for the Clinical Application of Particles 2/8

Sac

4 1 1 1 4

Spatial encoding and field gradients

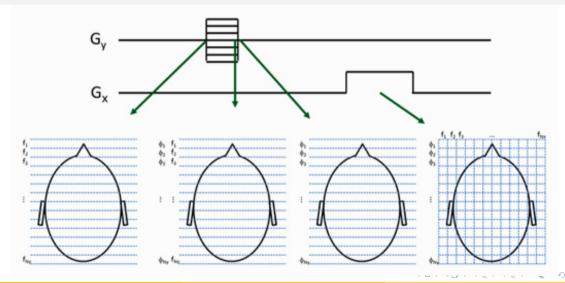
Gradient pulse causes Larmor frequency to become a function of position

So, the phase of the nuclear precession will become a function of position over the period of a gradient pulse

Exploit these features to:

- Encode x position into k_x via "frequency encoding"
- Encode y position into k_y via "phase encoding"

Remember, gradient pulses G_i are such that:

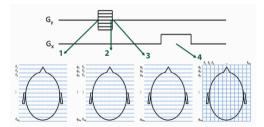

$$B_z(x, y, z, t) = B_0 + xG_x(t) + yG_y(t) + zG_z(t)$$

$$G_x = \frac{\partial B_z}{\partial x}$$
; i.e. a magnetic-field gradient in x direction
magnetic field xG_x is in the $\hat{\mathbf{k}}$ direction
 $G_y = \frac{\partial B_z}{\partial y}$; i.e. a magnetic-field gradient in y direction
magnetic field yG_y is in the $\hat{\mathbf{k}}$ direction

K. Long & R. McLauchlan

イモトイモト

Conversion of field gradient into k space

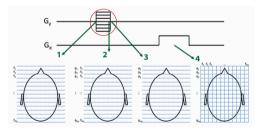

K. Long & R. McLauchlan

PhMInRT: Lctr 03; Sctn 1: Spatial encoding: 2

Conversion of field gradient into k space

Example:

phase encode *y*, frequency encode *x*


- At start of phase encoding-pulse, spins are in phase. G_y causes Larmor frequency to be function of y: ν = f(y)
- At end of phase encoding pulse, phase of precession, φ, has become a function of y, i.e. φ → φ(y)
- As time passes, phase dependence on y is preserved, i.e. φ = φ(y)
- Gradient pulse G_x causes Larmor frequency to become a function of x. Result is that y-position information is encoded in φ = φ(y) and x-position information is encoded in ν = f(x)

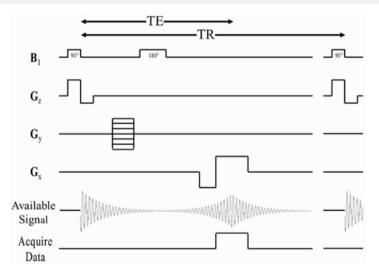
PhMInRT: Lctr 03; Sctn 1: Spatial encoding: 2

Spatial encoding gradient pulses part of pulse sequence

Example:

phase encode *y*, frequency encode *x*

Phase- and frequency-encoding pulses part of a longer pulse sequence that repeats with period TR


At each repeat the amplitude of G_y , the phase-encoding pulse, has a different amplitude (as indicated on the figure)

For example:

- 1^{st} iteration of sequence: $G_y = 0$;
- 2^{nd} iteration of sequence: $G_y = +\eta$;

•
$$3^{\mathrm{rd}}$$
 iteration of sequence: $\mathit{G}_{\mathit{y}}=-\eta;$

Example pulse sequence

Example of spin-echo pulse sequence

Data is acquired at spin-echo time as shown

Combination of phase and frequency encoding pulses and repetition to obtain N_y data points completes ones transverse slice

Summary of section 3

Field gradient makes Larmor *frequency* a function of position; *Phase difference as a function of position* develops during application of gradient pulse

Exploit the position dependence of frequency and phase to encode image in k-space

Pulse sequences designed to optimise contrast within slice for various tissues and types of investigation

Sac

イロト イロト イヨト イヨト