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CCAP: Overview
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- Centre for the Clinical Application 
of Particles (CCAP)

- Multi-disciplinary collaboration of 
academia,  national laboratories, 
industry, clinical institutes, and 
accelerator laboratories. 

- LhARA: Laser-hybrid Accelerator for 
Radiobiological Applications

- Design of a proposed novel and 
flexible research facility capable of 
delivering proton and ion beams 
in FLASH doses

- Multi-stage development for in 
vitro and in vivo studies

- Develop biophysical understanding of interactions between protons and ions with tissue
- Create capability to develop new treatment modalities

Particle Physics Department
ISIS Neutron and Muon Source

ASTeC



LhARA: Overview
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https://ccap.hep.ph.ic.ac.uk/trac/raw-
attachment/wiki/Communication/Notes/CCAP-TN-01.pdf

Pre-conceptual design report:

LhARA design publication [1]: - Stage 1: In vitro studies with proton beams up to 15 MeV.
- RF cavities for longitudinal phase space manipulation.
- Collimation for momentum selection & cleaning, and beam shaping.
- Octupoles for dose uniformity. 

- Stage 2: Fixed field alternating gradient accelerator.
- In vitro and in vivo studies with proton beams up to 127 MeV and ion beams 

up to 33.4 MeV/u. 

- Laser-target driven source

- Beam capture with Gabor 
(plasma) lenses

- Equivalent focusing 
to solenoids but 
with a much lower 
magnetic field.

- Pulse duration as low as 
10 ns in an arbitrary pulse 
structure. 

https://doi.org/10.3389/fphy.2020.567738
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LhARA Injection Line: Optical Verification
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- BDSIM [4] and PTC show excellent agreement for the beta function and dispersion.
- 10000 particles were tracked in BDSIM with an enlarged aperture to minimise losses. 

- Slight discrepancy w.r.t. original MADX Twiss parameters – known behaviour for low energy, non-paraxial beams.
- Minor tweaks required for beta and horizontal dispersion to match FFA cell conditions.

- Lattice designed in MADX [2] & 
BeamOptics [3]. 

- Gabor lenses are simulated as 
equivalent strength solenoids. 
They are optimised to produce 
parallel, low-beta function 
beam at the switching dipole.

- An idealised, 15 MeV Gaussian 
proton beam is initially 
assumed.

Beam from the laser target

Beam into the FFA ring



Optical Performance with Space Charge Effects
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- Compare BDSIM’s tracking to 
GPT [5] which includes space 
charge effects.

- BDSIM and GPT show excellent 
agreement when not 
considering space charge.

- Space charge was simulated 
with 10000 particles 
representing a total bunch 
charge of 109 protons. An initial 
emittance growth results in a 
larger than nominal beam in 
the capture section. 

- A significant impact on the downstream optical performance is observed, deviating from the design optics.
- Injection line beam focusing is limited to one dimension, we anticipate minimal impact from space charge effects 

after the switching dipole.
- Further optimisation is needed to improve capture performance. 



Ideal Beam Phase Space
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- Aberrations arising in capture section solenoids persist throughout the injection line
- The same aberrations impact LhARA stage 1 transport performance.

- Solenoids will be replaced by full electromagnetic simulations of the Gabor lenses, at which point the aberration and 
transport performance will be further investigated. 



Performance with a Laser-Target Sampled Beam
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- Broadly similar result obtained with BDSIM & GPT. Smaller emittance growth from space charge effects.
- Final dimensions do not match FFA cell requirements. Further optimisation is therefore required.

- Horizontal beam size jumps are due to a longer temporal profile in GPT snapshots capturing the bunch partially within 
sector-bend fields.

- Semi-realistic beam generated from 
sampled output of laser-target 
interaction simulation

- Particle-in-cell code, Smilei [6].
- See WEPAB139 (these 

proceedings) by Hin Tung Lau for 
more details.

- Particles outside of the 3.65cm Gabor 
lens radius were not fully focussed, 
resulting in a beam halo and 
subsequent losses.

- Radius widened to study 
downstream optical performance.



Laser-Target Sampled Beam: Losses & Energy Deposition
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- The beam was simulated in BDSIM with particle-matter interactions and the momentum selection collimator aperture radius set to 
0.5mm (the settings for stage 1 in vitro energy collimation).

- Due to the aforementioned aberrations in the capture section, heavy losses are observed with < 1% of the beam reaching the FFA 
septum magnet. 

- Energy deposition from primary protons and secondary emissions is mostly restricted to within +/- 2m of the collimator.
- New collimator settings are required for energy selection through the injection line. 
- These losses will be addressed when simulations of the Gabor lenses are available.



Conclusion & References
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- LhARA’s injection line has been modelled in Monte Carlo simulations to assess optical performance.

- Space charge causes early emittance growth in an ideal beam, resulting in the beam being unmatched to 
FFA cell parameters.

- A more realistic beam showed less susceptibility to space charge effects, but the final beam parameters 
require tuning to match the FFA requirements.

- Optimisation of the beam line is required. The combination of space charge effects in GPT and BDSIM’s 
accurate collimation capabilities are suited to optimisation studies going forward.
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