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Laser-hybrid Accelerator for Radiobiological Applications (LhARA)
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@ Ultra high dose rates. Figure: Schematic diagram of the LhARA beam lines [1]. The beam coming from the laser-driven source is

represented by the red arrow.

Staged development:
@ Stage 1: In vitro studies with proton beams up to 15 MeV.

@ Stage 2: In vitro and in vivo studies with proton beams up to 127 MeV and ion beams (including C®") with
energies up to 33.4 MeV/u.
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Stage 1 Beamline

Stage 1 of LhARA consists of the beamline elements from the laser source to the low energy in vitro arc.
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Figure: Stage 1 sections visualised with BDSIM [3].

@ Capture high energy protons/ions from laser source using Gabor (plasma) lenses (more detail in
[WEPAB140]), hence evading the space-charge limitations of conventional sources.

@ Beam transport designed using BeamOptics [4] and MAD-X [5].
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TNSA Mechanism

Target Normal Sheath Acceleration (TNSA) Mechanism:
o Intense laser pulse (> 10'® W/cm?).
@ Interaction with a thin foil creates a sheath field.
@ lons on the surface are ionized and accelerated.
@ The laser required to deliver a significant proton flux at
15MeV is commercially available.
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Figure: Schematic diagram of the TNSA process from Schwoerer [2].

Laser Parameter | Value Unit
Power 100 W
Energy 25 J
Pulse length 25 fs
Rep. rate 10 Hz
Focal spot size 3 pm
Intensity 9.2 x 10%° | W/iecm?
a0 20.75

Table: Table of some expected parameters for the laser system.
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Figure: Example of kinetic energy spectrum of protons from a
TNSA simulation. Blue bars indicate the selected energy range.
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Laser Plasma Interaction Simulations

Particle-in-cell (PIC) code Smilei [6] was used to simulate the laser-plasma interaction in two-dimensions (2D):

Smilei 2D: X-Z Position Space at 1 ps Smilei 2D: Transverse Phase Space at 1 ps
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) - ) . X Figure: Transverse phase space of proton macroparticles emerging from rear foil
Figure: Position of proton macroparticles emerging from rear foil surface (located g race (located at z = 5 um) 1 ps after laser strike. Colour in the plot
at z = 5 um) 1 ps after laser strike. Colour in the plot corresponds to the kinetic corresponds to the kinetic energy.
energy.

@ Laser is incident on a foil at 45°, with ions primarily accelerated in the longitudinal z direction.
@ High energy proton macroparticles emerge both off-axis and at an angle.
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Obtaining 3D Particle Distributions from 2D Simulations
@ 3D simulation of laser source necessary for beam tracking but requires considerable computing
resources.
@ Generated a 3D particle distributions from 2D simulations following the steps outline below:

H

Summary of Method

¥ )

@ Assume the same correlations for both transverse
axes as in simulation.

@ Sample the kinetic energy.

© Sample the momentum components from
momentum correlations in simulations.

© Sample the position coordinates based on
correlations between momentum and position.

@ Center the distribution for momentum and position
for energies in the range of interest.
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Figure: Beam position in transverse plane at exit of vacuum chamber
y (near the entrance to first Gabor lens); colours represent the number of
proton macroparticles.
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Beam Size Evolution
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Figure: Transverse dimensions of an idealised 15MeV Gaussian proton beam (solid lines, simulated with an initial bunch of ~ 104 particles) and sampled beam
(dashed lines, simulated with an initial bunch of ~ 3 x 10* particles) as a function of position in Stage 1 beamline.

@ Particle tracking results using a combination of simulation codes: BDSIM [3] (beam line tracking) and
GPT [7] (inclusion of space charge effects on beam).

@ Sampled beam evolution similar to an idealised Gaussian beam.
@ Analysis and optimisations are ongoing.
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Conclusion

@ Beam tracking results obtained for LhDARA.
@ Techniques developed to generate approximate 3D particle distributions from 2D laser source simulations.

@ A semi-realistic beam can be transported through the beam line with a beam size evolution comparable to
an idealised beam.

@ Analysis and optimisations are ongoing to improve the simulations and tracking.
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