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1. Introduction — LhARA

» Need for systematic studies of the interaction
between ion beams and cancer cells

> develop better treatments

» LhARA aims to deliver proton beam therapy in a
new regimen:
> variety of different ion species
> at high and ultra-high dose rates
> variety of time structures, spectral
Fig. 1: The LhARA facility concept [1] distributions, and spatial configurations
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Fig. 2: A high-power pulsed laser drives the cre-
ation of a large flux of protons or light ions.

» Strong-focusing Gabor lenses
capture the protons and ions by an
electron cloud.

» Particles captured at energies
significantly above those that pertain
to conventional facilities.

» Evade the limits on the
instantaneous dose rates.
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Fig. 3: The main components of the Gabor lens prototype built at Imperial
(1—central anode, 2—end electrodes, 3-vacuum tube, 4—pancake coils) [5]
» Higher focusing strength for higher plasma density

» Greatly reduced magnetic field compared to a solenoid
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3. Beam test setup
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Fig. 4: Schematic of the beam test setup with the Gabor lens exposed to a proton beam at the Surrey lon Beam Centre in
2017.

» High voltage and current settings that produced stable plasma identified previously at Imperial

» r = 1mm pencil beams imaged downstream of the lens on 2 consecutive days
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4. Beam test results

Lens off

Fig. 5: Camera image of the six beam spots with the current through the coils of 0A, 28 A, and 33 A.

Pencil beam focused into rings with non-uniform intensity

Focusing strength increases for higher current through the coil coherent
off-axis rotation

>
» Ring diameter and eccentricity increases away from the beam axis
| 4
| 4
of the plasma

Rings observed consistently throughout experiment

> Plasma motion is a characteristic of the geometry and operation
of the lens.

» Similar circular structure observed in experiment elsewhere [3]
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5. Characterisation of lens performance
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Fig. 7: Position of the centroid of two sets of beam spots with
increasing magnetic field strength. The 3 spots (blue) and 6
spots (red) measurements were taken on consecutive days.

Fig. 6: Position of the centroid of 3 beam spots for varying
magnetic field and anode voltages.

» Correlation between focusing strength, electron density, and magnetic field strength confirmed
> Indicates the presence of a plasma.

» Additional focusing force observed separate from the plasma rotation
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6. Particle-tracking simulation

Fig. 8: Schematic repre-
sentation of the m = 1
plasma diocotron mode
viewed along the axis of
the lens.

» Uniform plasma column, radially displaced

» Radial image charge field causes an ExB drift
of the plasma in the 6 direction [2]

» Proton tracked through time-dependent electric
field map in BDSIM [4]

> Ring-like structure reproduced

» Separation and width of rings seen to vary with
electron density

» Intensity modulation changes with the rotation
frequency of the plasma column
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Fig. 9: Six pencil beams focused by a rotating uniform plasma
column as simulated with BDSIM [4] for electron densities n, =
1.8 x 10* m™3 (top) and n, = 2.8 x 10** m 3 (bottom).
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7. Conclusions

» A Gabor lens prototype was built at Imperial College and a regime where a plasma is present was
identified.

» The lens was tested at the Surrey lon Beam Centre with 1.4 MeV protons.
» The lens was observed to transform pencil beams intro rings.

» Focusing strength varied non-linearly with the magnetic field strength — it shows a variable plasma
trapping efficiency.

» Particle transport simulations

> confirm the presence of a plasma
> indicate the plasma was excited into a coherent off-axis rotation

» For the lens to be a reliable focusing device, the driving mechanism causing the rotation of the
plasma needs to be identified and suppressed.
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