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Laser-hybrid Accelerator for Radiobiological Applications (LhARA)
LhARA [1] is proposed as a
novel and flexible facility for ra-
diobiological research (More de-
tail in [MOPAB136]).

Laser-driven source.

Gabor lenses for beam
capture.

Fixed field alternating
gradient accelerator (FFA)
for post acceleration.

Ultra high dose rates. Figure: Schematic diagram of the LhARA beam lines [1]. The beam coming from the laser-driven source is
represented by the red arrow.

Staged development:

Stage 1: In vitro studies with proton beams up to 15 MeV.

Stage 2: In vitro and in vivo studies with proton beams up to 127 MeV and ion beams (including C6+) with
energies up to 33.4 MeV/u.
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Stage 1 Beamline
Stage 1 of LhARA consists of the beamline elements from the laser source to the low energy in vitro arc.
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Figure: Stage 1 sections visualised with BDSIM [3].

Capture high energy protons/ions from laser source using Gabor (plasma) lenses (more detail in
[WEPAB140]), hence evading the space-charge limitations of conventional sources.
Beam transport designed using BeamOptics [4] and MAD-X [5].
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TNSA Mechanism

Target Normal Sheath Acceleration (TNSA) Mechanism:

Intense laser pulse (≫ 1018 W/cm2).

Interaction with a thin foil creates a sheath field.

Ions on the surface are ionized and accelerated.

The laser required to deliver a significant proton flux at
15 MeV is commercially available.

Figure: Schematic diagram of the TNSA process from Schwoerer [2].

Laser Parameter Value Unit
Power 100 TW
Energy 2.5 J
Pulse length 25 fs
Rep. rate 10 Hz
Focal spot size 3 µm
Intensity 9.2 × 1020 W/cm2

a0 20.75

Table: Table of some expected parameters for the laser system.

Figure: Example of kinetic energy spectrum of protons from a
TNSA simulation. Blue bars indicate the selected energy range.
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Laser Plasma Interaction Simulations
Particle-in-cell (PIC) code Smilei [6] was used to simulate the laser-plasma interaction in two-dimensions (2D):

Figure: Position of proton macroparticles emerging from rear foil surface (located
at z = 5 µm) 1 ps after laser strike. Colour in the plot corresponds to the kinetic
energy.

Figure: Transverse phase space of proton macroparticles emerging from rear foil
surface (located at z = 5 µm) 1 ps after laser strike. Colour in the plot
corresponds to the kinetic energy.

Laser is incident on a foil at 45◦, with ions primarily accelerated in the longitudinal z direction.

High energy proton macroparticles emerge both off-axis and at an angle.
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Obtaining 3D Particle Distributions from 2D Simulations
3D simulation of laser source necessary for beam tracking but requires considerable computing
resources.

Generated a 3D particle distributions from 2D simulations following the steps outline below:

Summary of Method

1 Assume the same correlations for both transverse
axes as in simulation.

2 Sample the kinetic energy.
3 Sample the momentum components from

momentum correlations in simulations.
4 Sample the position coordinates based on

correlations between momentum and position.
5 Center the distribution for momentum and position

for energies in the range of interest. Figure: Beam position in transverse plane at exit of vacuum chamber
(near the entrance to first Gabor lens); colours represent the number of
proton macroparticles.
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Beam Size Evolution

Figure: Transverse dimensions of an idealised 15 MeV Gaussian proton beam (solid lines, simulated with an initial bunch of ∼ 104 particles) and sampled beam
(dashed lines, simulated with an initial bunch of ∼ 3 × 104 particles) as a function of position in Stage 1 beamline.

Particle tracking results using a combination of simulation codes: BDSIM [3] (beam line tracking) and
GPT [7] (inclusion of space charge effects on beam).

Sampled beam evolution similar to an idealised Gaussian beam.

Analysis and optimisations are ongoing.
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Conclusion
Beam tracking results obtained for LhARA.

Techniques developed to generate approximate 3D particle distributions from 2D laser source simulations.

A semi-realistic beam can be transported through the beam line with a beam size evolution comparable to
an idealised beam.

Analysis and optimisations are ongoing to improve the simulations and tracking.
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