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Abstract

The ‘Laser-hybrid Accelerator for Radiobiological Applications’, LhARA, is conceived as a novel, uniquely-
flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have
wide application, will be developed to allow particle-beam therapy to be delivered in a completely new regime,
combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. LhARA
will be a hybrid accelerator system in which laser interactions drive the creation of a large flux of protons or
light ions that are captured using a plasma (Gabor) lens and formed into a beam. The laser-driven source allows
protons and ions to be captured at energies significantly above those that pertain in conventional facilities, thus
evading the current space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid
approach, therefore, will allow the vast “terra incognita” of the radiobiology that determines the response of
tissue to ionising radiation to be studied with protons and light ions using a wide variety of time structures,
spectral distributions, and spatial configurations at instantaneous dose rates up to and significantly beyond the
ultra-high dose-rate ‘FLASH’ regime.

It is proposed that LhARA be developed in two stages. In the first stage, a programme of in vitro radiobiology
will be served with proton beams with energies between 10 MeV and 15 MeV. In stage two, the beam will be
accelerated using a fixed-field accelerator (FFA). This will allow experiments to be carried out in vitro and in
vivo with proton beam energies of up to 127 MeV. In addition, ion beams with energies up to 33.4 MeV per
nucleon will be available for in vitro and in vivo experiments. This paper presents the conceptual design for
LhARA and the R&D programme by which the LhARA consortium seeks to establish the facility.

Lay summary

It is well established that radiation therapy (RT) is an effective treatment for many types of cancer. Most
treatments are delivered by machines that accelerate electrons which are then used to produce a beam of high-
energy photons (X-rays) which are directed at a tumour to kill cancer cells. However, healthy tissue anywhere
in the path of the photon beam is also irradiated and so can be damaged. Modern X-ray therapy is able to reduce
this damage by using several beams at different angles.

Recent years have seen the use of a new type of machine in which protons are accelerated to produce proton
beams (rather than photon beams) which are directed at a tumour. These proton beams can be arranged to
deposit almost all of their energy in a small volume within a tumour so they cause little damage to healthy
tissue; a major advantage over photon beams. But proton machines are large and expensive, so there is a need
for the development of proton machines that are smaller, cheaper and more flexible in how they can be used.

The LhARA project is aimed at the development of such proton machines using a new approach based on
high powered lasers. Such new machines could also make it easier to deliver the dose in very short high-
intensity pulses and as a group of micro-beams—exciting recent research has shown that this brings improved
effectiveness in killing cancer cells while sparing healthy tissue. The technology to be proved in LhARA should
enable a course of RT to be delivered in days rather than weeks and should be more effective.

Scientifically, there is a need to understand much better the basic processes by which radiation interacts with
biological matter to kill cancer cells—the investigation of these processes involves physics as well as biology.
Thus the most important aim of LhARA is to pursue this radiobiological research in new regimes and from this
to develop better treatments. LhARA will also pursue technological research into laser-hybrid accelerators.
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1 Introduction

Cancer is the second most common cause of death globally [1]. In 2018, 18.1 million new cancer cases were
diagnosed, 9.6 million people died of cancer-related disease, and 43.8 million people were living with can-
cer [2, 3]. It is estimated that 26.9 million life-years could be saved in low- and middle-income countries if
radiotherapy capacity could be scaled up [4]. Novel techniques incorporated in facilities that are at once robust,
automated, efficient, and cost-effective are required to deliver the required scale-up in provision.

Radiation therapy (RT), a cornerstone of cancer treatment, is used in over 50% of cancer patients [5]. The
most frequently used types of radiotherapy employ photon or electron beams with MeV-scale energies. Proton
and ion beams offer substantial advantages over X-rays because the bulk of the beam energy is deposited in the
Bragg peak. This allows dose to be conformed to the tumour while sparing healthy tissue and organs at risk.
The benefits of proton and ion-beam therapy (PBT) are widely recognised. PBT today is routinely delivered
in fractions of ∼ 2Gy per day over several weeks; each fraction being delivered at a rate of <∼ 10Gy/minute
deposited uniformly over the target treatment volume. Exciting evidence of therapeutic benefit has recently
been reported when dose is delivered at ultra-high dose-rate, >∼ 40Gy/s (“FLASH” RT) [6, 7], or provided
in multiple micro-beams with diameter less than 1 mm distributed over a grid with inter-beam spacing of ∼
3mm [8]. However, the radiobiological mechanisms by which the therapeutic benefit is generated are not
entirely understood.

LhARA, the Laser-hybrid Accelerator for Radiobiological Applications, is conceived as the new, highly
flexible, source of radiation that is required to explore the vast “terra incognita” of the mechanisms by which
the biological response to ionising radiation is determined by the physical characteristics of the beam. A high-
power pulsed laser will be used to drive the creation of a large flux of protons or light ions which are captured
and formed into a beam by strong-focusing plasma lenses. The laser-driven source allows protons and ions to
be captured at energies significantly above those that pertain in conventional facilities, thus evading the current
space-charge limit on the instantaneous dose rate that can be delivered. The plasma (Gabor) lenses provide the
same focusing strength as high-field solenoids at a fraction of the cost. Rapid acceleration will be performed
using a fixed-field alternating-gradient accelerator (FFA) thereby preserving the unique flexibility in the time,
energy, and spatial structure of the beam afforded by the laser-driven source.

We propose that LhARA be developed in two stages. In the first stage, the laser-driven beam, captured and
transported using plasma lenses and bending magnets, will serve a programme of in vitro radiobiology with
proton beams of energy of up to 15 MeV. In stage two, the beam will be accelerated using an FFA. This will
allow experiments to be carried out in vitro and in vivo with proton-beam energies of up to 127 MeV. Ion beams
(including C6+) with energies up to 33.4 MeV per nucleon will also be available.

The laser pulse that initiates the production of protons or ions at LhARA may be triggered at a repetition rate
of up to 10 Hz. The time structure of the beam may therefore be varied to interrupt the chemical and biological
pathways that determine the biological response to ionising radiation with 10 ns to 40 ns long proton or ion
bunches repeated at intervals as small as 100 ms. The technologies chosen to capture, transport, and accelerate
the beam in LhARA have been made so that this unique capability is preserved. The LhARA beam may be
used to deliver an almost uniform dose distribution over a circular area with a maximum diameter of between
1 cm and 3 cm. Alternatively the beam can be focused to a spot with diameter of ∼ 1mm.

The technologies demonstrated in LhARA have the potential to be developed to make “best in class” treat-
ments available to the many. The laser-hybrid approach will allow radiobiological studies and eventually radio-
therapy to be carried out in completely new regimes, delivering a variety of ion species in a broad range of time
structures, spectral distributions, and spatial configurations at instantaneous dose rates up to and potentially
significantly beyond the current ultra-high dose-rate “FLASH” regime.

The LhARA consortium is the multidisciplinary collaboration of clinical oncologists, medical and academic
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physicists, biologists, engineers, and industrialists required to deliver such a transformative particle-beam sys-
tem. With its “pre Conceptual Design Report” (pre-CDR) [9] the consortium lays out its concept for LhARA,
its potential to serve a ground-breaking programme of radiobiology, and the technological advances that will be
made in its execution. The work presented in the LhARA pre-CDR lays the foundations for the development of
full conceptual and technical designs for the facility. The pre-CDR also contains a description of the R&D that
is required to demonstrate the feasibility of critical components and systems. This paper presents a summary
of the contents of the pre-CDR and lays out the vision of the consortium.

2 Motivation

Conventional (X-ray) RT is one of the most effective cancer treatments, particularly for solid tumours including
head and neck tumours and glioblastoma. The dose delivered using X-rays falls approximately exponentially
with depth; this characteristic implies a fundamental limit on the maximum dose that can be delivered to the
tumour without delivering an unacceptably large dose to healthy tissue. For a given treatment beam-entry point,
tumours that lie deep within the patient will receive a dose significantly lower than that delivered to the healthy
tissues through which the beam passes on its way to the treatment site. X-rays that pass through the tumour
will also deliver a dose to the tissues that lie behind. Dose delivered to healthy tissues can cause the death of
the healthy cells and create adverse side effects. Furthermore, the maximum X-ray dose that can be delivered is
limited by the presence of sensitive organs such as the brain and spinal cord. This situation is particularly acute
in infants for whom dose to healthy tissue, sensitive organs, and bone can lead to developmental issues and a
higher probability of secondary malignancies later in life.

RT delivered using protons and ions, particle-beam therapy (PBT), has the potential to overcome some of
the fundamental limitation of X-rays in cancer treatment [10]. The physics of the interaction between ionis-
ing radiation and tissue determines the radiobiological effect. Energy loss through ionisation is the dominant
mechanism at the beam energies relevant to PBT. The energy lost per unit distance travelled, the linear energy
transfer (LET), increases as the protons or ions slow down. At low velocity, the rate of increase in LET is ex-
tremely rapid. This generates a ‘Bragg peak’ in the energy deposited at the maximum range of the beam just as
the protons or ions come to rest. In contrast to photons, this characteristic allows the dose delivered to healthy
tissue behind the Bragg peak to be reduced to zero for protons, and almost to zero for carbon ions. Scanning the
Bragg peak over the tumour volume enables an increase in dose to the tumour while, in comparison to X-ray
therapy, sparing tissues in front of the tumour. By choosing carefully the treatment fields, dose to sensitive
organs can be reduced significantly compared to an equivalent treatment with photons, thus improving patient
outcomes. The Particle Therapy Co-Operative Group (PTCOG) currently lists 90 proton therapy facilities and
12 carbon ion therapy facilities. These facilities are located predominantly in high-income countries [11]. Low-
and middle-income countries (LMIC) are relatively poorly served, indeed nearly 70% of cancer patients glob-
ally do not have access to RT [5]. Novel RT techniques incorporated in facilities that are robust, automated,
efficient, and cost-effective are therefore required to deliver the necessary scale-up in provision. This presents
both a challenge and an opportunity; developing the necessary techniques and scaling up RT provision will
require significant investment but will also create new markets, drive economic growth through new skills and
technologies and deliver impact through improvements in health and well-being.

The case for a systematic study of the radiobiology of proton and ion beams
The nature of the particle-tissue interaction confers on PBT the advantage that the dose can be precisely con-
trolled and closely conformed to the tumour volume. However, there are significant biological uncertainties
in the impact of ionising radiation on living tissue. The efficacy of proton and ion beams is characterised by
their relative biological effectiveness (RBE) in comparison to reference photon beams. The treatment-planning
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software that is in use in the clinic today assumes an RBE value for protons of 1.1 [12]. This means that a lower
dose of protons is needed to produce the same therapeutic effect that would be obtained using X-rays. However,
the rapid rise in the LET at the Bragg peak leads to significant uncertainties in the RBE. It is known that RBE
depends strongly on many factors, including particle energy, dose, dose rate, the degree of hypoxia, and tissue
type [13], however, the radiobiology that determines these dependencies is not fully understood. A number of
studies have shown that there can be significant variation in RBE [14–16]. Indeed, RBE values from 1.1 to over
3 have been derived from in vitro clonogenic-survival assay data following proton irradiation of cultured cell
lines derived from different tumours [13, 17, 18]. Some of this variation may be due to the positioning of the
cells during irradiation relative to the Bragg peak. RBE values of ∼ 3 are accepted for high-LET carbon-ion
irradiation, although higher values have been reported [19]. RBE uncertainties for carbon and other ion species
are at least as large as they are for protons.

Uncertainties in RBE can lead to an incorrect estimation of the dose required to treat a particular tumour.
Overestimation of the required dose leads to risk of damage to healthy tissue, while an underestimate can lead
to the tumour not being treated sufficiently for it to be eradicated. RT causes cell death by causing irreparable
damage to the cell’s DNA. Hence, differences in RBE can also affect the spectrum of DNA damage induced
within tumour cells. Larger RBE values, corresponding to higher LET, can cause increases in the frequency
and complexity of DNA damage, particularly DNA double-strand breaks (DSB) and complex DNA damage
(CDD) where multiple DNA lesions are induced in close proximity [20, 21]. These DNA lesions are a major
contributor to radiation-induced cell death as they represent a significant barrier to the cellular DNA-repair
machinery. Furthermore, the specific nature of the DNA damage induced by ions determines the principal
DNA-repair pathways employed to effect repair; base excision repair is employed in response to DNA-base
damage and single-strand breaks, while non-homologous end-joining and homologous recombination is em-
ployed in response to DSBs [20]. However, there are a number of other biological factors that contribute to
the efficacy of X-ray therapy and PBT, which produces greatly varying RBE in specific tumours, including the
intrinsic radiosensitivity of the tissue, the level of oxygenation (hypoxia), the growth and repopulation char-
acteristics, and the associated tumour micro-environment. Consequently, there is significant uncertainty in the
precise radiobiological mechanisms that arise and how these mechanisms are affected by PBT. A more detailed
and precise understanding is required for optimal patient-treatment strategies to be devised. Detailed system-
atic studies of the biophysical effects of the interaction of protons and ions, under different physical conditions,
with different tissue types will provide important information on RBE variation and could enable enhanced
treatment-planning algorithms to be devised. In addition, studies examining the impact of combination thera-
pies with PBT (e.g. targeting the DNA damage response, hypoxia signalling mechanisms and also the tumour
micro-environment) are currently sparse; performing these studies will therefore provide input vital to the de-
velopment of future personalised patient-therapy strategies using PBT. Such studies are needed, especially in
the case of ion-beam radiotherapy.

The case for novel beams for radiobiology
PBT delivery to date has been restricted to a small number of beam characteristics. In a typical treatment
regimen the therapeutic dose is provided in a series of daily sessions delivered over a period of several weeks.
Each session consisting of a single fraction of ∼2 Gy delivered at a rate of <∼ 5Gy/minute. The dose in each
fraction would be distributed uniformly over an area of several square centimetres. Recent reports provide ex-
citing evidence of therapeutic benefit when the dose is delivered at ultra-high dose rate (> 40Gy/s) “FLASH”
RT [6, 7]. These studies indicate significantly reduced lung fibrosis in mice, skin toxicity in mini-pigs, and
reduced side-effects in cats with nasal squamous-cell carcinoma. Varian has indicated that dose rates greater
than 40 Gy/s are useful for FLASH irradiation [22], while IBA have indicated that the FLASH phenomenon is
observed at dose rates above 33 Gy/s [23]. In addition, therapeutic benefit has been demonstrated with the use
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of multiple micro-beams with diameter of less than 1 mm distributed over a grid with inter-beam spacing of
3 mm [8]. However, there is still significant uncertainty regarding the thresholds and the radiobiological mech-
anisms by which therapeutic benefit is generated in FLASH and micro-beam therapy, which require extensive
further study both in vitro and in appropriate in vivo models.

LhARA is designed to be a highly flexible source delivering the temporal, spectral, and spatial beam struc-
tures that are required to elucidate the mechanisms by which the biological response to ionising radiation is
determined by the physical characteristics of the beam, including FLASH and micro-beam effects. These com-
prehensive studies are not currently possible at clinical RT facilities. Thus the LhARA facility will provide
greater accessibility to stable ion beams, enable different temporal fractionation schemes, and deliver reliable
and reproducible biological data with fewer constraints than at current clinical centres. The availability of sev-
eral ion beams (from protons to heavier ions) within the same facility will provide further flexibility and the
ability to perform direct radiobiological comparisons of the effect of different charged particles. In addition,
LhARA will enable exhaustive evaluations of RBE using more complex end-points (e.g. angiogenesis and
inflammation) in addition to routine survival measurements. The ability to evaluate charged particles in con-
junction with other therapies (immunotherapy and chemotherapy), and of performing in vivo experiments with
the appropriate animal models is a huge advantage given the current lack of evidence in these areas. LhARA
therefore has the potential to yield the accumulation of radiobiological data that can drive a signficant change
in current clinical practice. The simulations of LhARA that are described in this document have been used to
estimate the dose delivered as a function of energy for protons and carbon ions. Details of the simulations can
be found in sections 3.3 and 3.4. The simulations show instantaneous particle rates on the order of 109 particles
per shot can be achieved, corresponding to average dose rates up to >∼ 120Gy/s for protons and >∼ 700Gy/s for
carbon ions. These estimates are based on the baseline specifications for LhARA.

Laser-hybrid beams for radiobiology and clinical application
High-power lasers have been proposed as an alternative to conventional proton and carbon-ion facilities for
radiotherapy [24–26]. The capability of laser-driven ion beams to generate protons and high-LET carbon ions
at FLASH dose rates is a significant step forward for the provision of local tumour control whilst sparing normal
tissue. High-power lasers have also been proposed to serve as the basis of electron, proton and ion-beams for
radiobiology [27–32]. More recent projects (e.g. A-SAIL [33], ELI [34] and SCAPA [35]) will also investigate
radiobiological effects using laser-driven ion beams. These studies will also address various technological
issues [36–40].

The LhARA collaboration’s concept is to exploit a laser to drive the creation of a large flux of protons or
light ions which are captured and formed into a beam by strong-focusing plasma lenses. The laser-driven
source allows protons and ions to be captured at energies significantly above those that pertain in conventional
facilities, thus evading the current space-charge limit on the instantaneous dose rate that can be delivered. Rapid
acceleration will be performed using a fixed-field alternating-gradient accelerator (FFA) thereby preserving the
unique flexibility in the time, energy, and spatial structure of the beam afforded by the laser-driven source.
Modern lasers are capable of delivering a Joule of energy in pulses that are tens of femtoseconds in length at
repetition rates of >∼ 10Hz. At source, a laser-driven electron beam is reproducibly-well collimated and has
a modest (∼5%) energy spread. Laser-driven ion sources create beams that are highly divergent, have a large
energy spread, and an intensity that can vary by up to 40% pulse-to-pulse. These issues are addressed in the
conceptual design through the use of plasma lenses to provide strong focusing and to allow energy selection.
In addition, sophisticated instrumentation will be used in a fast feedback-and-control system to ensure that the
dose delivered is both accurate and reproducible. This approach will allow produce multiple ion species, from
proton to carbon, to be produced from a single laser by varying the target foil and particle-capture optics.

The LhARA consortium’s vision is that LhARA will prove the principle of the novel technologies required
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Figure 1: Schematic diagram of the LhARA beam lines. The particle flux from the laser-driven source is
shown by the red arrow. The ‘Capture’ section is followed by the ‘Matching and energy selection’ section. The
beam is then directed either into the 90◦ bend that takes it to the low-energy in vitro end station, towards the
FFA injection line, or to the low-energy beam dump. Post acceleration is performed using the FFA on extraction
from which the beam is directed either to the high-energy in vitro end station, the in vivo end station, or the
high-energy beam dump.

for the development of future therapy facilities. The legacy of the LhARA programme will therefore be:

• A unique facility dedicated to the development of a deep understanding of the radiobiology of proton and
ion beams; and

• The demonstration in operation of technologies that will allow PBT to be delivered in completely new
regimes.

3 The LhARA facility

The LhARA facility, shown schematically in figure 1, has been designed to serve two end stations for in vitro
radiobiology and one end station for in vivo studies. The principle components of the LhARA accelerator are:
the laser-driven proton and ion source; the matching and energy selection section; beam delivery to the low-
energy in vitro end station; the low-energy abort line; the injection line for the fixed-field alternating-gradient
accelerator (FFA); the FFA; the extraction line; the high-energy abort line; beam delivery to the high-energy in
vitro end station; and the transfer line to the in vivo end station. Proton beams with energies of between 12 MeV
and 15 MeV will be delivered directly from the laser-driven source to the low-energy in vitro end station via a
transfer line. The high-energy in vitro end station and the in vivo end station will be served by proton beams
with energy between 15 MeV and 127 MeV and by ion beams, including C6+ with energies up to 33.4 MeV/u.
This configuration makes it natural to propose that LhARA be constructed in two stages; Stage 1 providing
beam to the low-energy in vitro end station and Stage 2 delivering the full functionality of the facility. The
development of LhARA Stage 1 will include machine performance and optimisation studies designed to allow
in vitro experiments to begin as soon as possible.

The design parameters for the various components of LhARA are given in tables 1 and 2. The design of the
LhARA facility is described in the sections that follow.
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Table 1: Design parameters of the components of the LhARA facility. The parameter table is provided in a
number of sections. This section contains parameters for the Laser-driven proton and ion source, the Proton
and ion capture section, and the Stage 1 beam transport section.

Parameter Value or range Unit
Laser driven proton and ion source
Laser power 100 TW
Laser Energy 2.5 J
Laser pulse length 25 fs
Laser rep. rate 10 Hz
Required maximum proton energy 15 MeV
Proton and ion capture
Beam divergence to be captured 50 mrad
Gabor lens effective length 0.857 m
Gabor lens length (end-flange to end-flange) 1.157 m
Gabor lens cathode radius 0.0365 m
Gabor lens maximum voltage 65 kV
Number of Gabor lenses 2
Alternative technology: solenoid length 1.157 m
Alternative technology: solenoid max field
strength

1.3 T

Stage 1 beam transport: matching & energy selection, beam delivery to low-energy end station
Number of Gabor lenses 3
Number of re–bunching cavities 2
Number of collimators for energy selection 1
Arc bending angle 90 Degrees
Number of bending magnets 2
Number of quadrupoles in the arc 6
Alternative technology: solenoid length 1.157 m
a Alternative technology: solenoid max field
strength (to serve the injection line to the Stage 2)

0.8 (1.4) T
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Table 2: Design parameters of the components of the LhARA facility. The parameter table is provided in a
number of sections. This section contains parameters for the Stage 2 beam transport and the in vitro and in vivo
end stations.

Parameter Value or range Unit
Stage 2 beam transport: FFA, transfer line, beam delivery to high-energy end stations
Number of bending magnets in the injection line 7
Number of quadrupoles in the injection line 10
FFA: Machine type single spiral scaling FFA
FFA: Extraction energy 15–127 MeV
FFA: Number of cells 10
FFA: Orbit Rmin 2.92 m
FFA: Orbit Rmax 3.48 m
FFA: Orbit excursion 0.56 m
FFA: External R 4 m
FFA: Number of RF cavities 2
FFA: RF frequency 1.46–6.48 MHz
FFA: harmonic number 1, 2 or 4
FFA: RF voltage (for 2 cavities) 4 kV
FFA: spiral angle 48.7 Degrees
FFA: Max B field 1.4 T
FFA: k 5.33
FFA: Magnet packing factor 0.34
FFA: Magnet opening angle 12.24 degrees
FFA: Magnet gap 0.047 m
FFA: Ring tune (x,y) (2.83,1.22)
FFA: γT 2.516
FFA: Number of kickers 2
FFA: Number of septa 2
Number of bending magnets in the extraction line 2
Number of quadrupoles in the extraction line 8
Vertical arc bending angle 90 Degrees
Number of bending magnets in the vertical arc 2
Number of quadrupoles in the vertical arc 6
Number of cavities for longitudinal phase space
manipulation

5

Number of quadrupoles in the in vivo beam line 4
In vitro biological end stations
Maximum input beam diameter 1-3 cm
Beam energy spread (full width) Low-energy end station: ≤ 4 %

High-energy end station: ≤ 1 %
Input beam uniformity < 5 %
Scintillating fibre layer thickness 0.25 mm
Air gap length 5 mm
Cell culture plate thickness 1.3 mm
Cell layer thickness 0.03 mm
Number of end stations 2
In vivo biological end station
Maximum input beam diameter 1-3 cm
Beam energy spread (full width) ≤ 1 %
Input beam uniformity < 5 %
Beam options Spot-scanning, passive scatter-

ing, micro-beam
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3.1 Laser-driven proton and ion source

Laser-driven ions have been posited as a source for radiobiological studies for a number of years [27, 41, 42].
Until now, the achievable ion energies, energy spreads, and reproducibility of such beams have meant that
such sources are not suitable for a full radiobiological laboratory setting. While a number of cell irradiation
experiments have been conducted with laser-accelerated ions [29, 30, 36, 43], these have been limited in scope
to a single-shot configuration. In addition, most of these experiments have been performed on high-power
laser facilities with rapidly shifting priorities, where the time to install dedicated diagnostic systems has not
been available. At present, a dedicated ion beam for radiobiology, based on a laser-driven source, is not avail-
able anywhere in the world. Therefore, LhARA will be a unique, state-of-the-art system, able to explore the
radiobiological benefits of a laser-accelerated ion source.

A novel solution for ion-acceleration is to use a compact, flexible laser-driven source coupled to a state-of-
the-art beam-transport line. This allows an accelerating gradient of >∼ 10GV/m to be exploited at the laser-
driven source. We propose to operate in a laser-driven sheath-acceleration regime [44–46] for ion generation.
An intense, short laser pulse will be focused onto a target. The intense electric field generated on the front
surface of the target accelerates the surface electrons, driving them into the material. Electrons which gain
sufficient energy traverse the target, ionising the material as they go. A strong space-charge electric field, the
‘sheath’, is created as the accelerated electrons exit the rear surface of the target. This field in turn accelerates
surface-contaminant ions. The sheath-acceleration scheme has been shown to produce ion energies greater
than 40 MeV/u at the highest laser intensities. The maximum proton energy (Ep) scales with laser intensity
(I) as, Ep ∝ I

1
2 . The laser required to deliver a significant proton flux at 15 MeV can be compact, relatively

inexpensive, and is commercially available.

The distribution of proton and ion energies observed in laser-driven beams exhibits a sharp cut off at the
maximum energy and, historically, the flux of laser-accelerated ion beams has varied significantly shot-to-shot.
To reduce the impact of the shot-to-shot variations the choice has been made to select particles from the plateau
of the two-temperature energy spectrum of the laser-accelerated ion beam. This choice should enhance ion-
beam stability and allow reproducible measurements to be carried out at ultra-high dose rates using a small
number of fractions. To create the flux required in the plateau region it is proposed that a 100 TW laser system
is used. A number of commercial lasers are available that are capable of delivering> 2.5 J in pulses of duration
< 25 fs, at 10 Hz with contrast better than 1010 : 1. Shot-to-shot stability of < 1% is promised, an important
feature for stable ion-beam production.

Key to the operation of this configuration is a system that refreshes the target material at high-repetition
rate in a reproducible manner. A number of schemes have been proposed for such studies, from high-pressure
gases [47–49], cryogenic hydrogen ribbons [50–52], liquid sheets [53] and tape drives [54]. For the LhARA
facility, a tape drive based on the system developed at Imperial College London is proposed. This system is
capable of reliable operation at target thicknesses down to 5µm, using both aluminium and steel foils, and
down to 18µm using plastic tapes. Such tape-drive targets allow operation at high charge (up to 100 pC at
15± 1MeV, i.e. > 109 protons per shot) and of delivering high-quality proton and ion fluxes at repetition rates
of up to 10 Hz or greater.

The unique features of the laser-driven ion source proposed for LhARA offer a number of opportunities to
push the frontiers in the fields of sustained high-frequency ion generation, advanced targetry solutions and
active, high-repetition rate diagnostics. The successful development and execution of LhARA will provide a
leap forward in terms of capability and open up exciting new opportunities for applications not just in radio-
biology. While pushing these new frontiers, the radiobiological-capabilities of LhARA are based on relatively
low-energy ion beams, mitigating the risks that operating at the energy-frontier of the field would imply.

High repetition-rate operation of laser-driven radiation sources is a relatively new area of interest [54–58].
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Such operating schemes pose a number of engineering challenges. It is proposed to apply machine-learning and
genetic algorithms to the optimisation of the laser-target interaction to optimise the beam charge, peak energy,
energy spread, and divergence of the ion flux produced [55]. These techniques will require appropriate R&D
effort. The first experiments of this kind will be possible using the existing laser capabilities at Imperial College
London, the Central Laser Facility at the Rutherford Appleton Laboratory, and elsewhere.

The careful control of the tension on the tape in a tape-drive target is critical for reproducible operation. The
tape must be stretched to flatten the surface, without stretching it to its plastic response. Surface flatness is
important for a number of reasons. Rippling of the front surface modifies the laser absorption dramatically;
uncharacterised rippling can make shot-to-shot variations significant and unpredictable [54]. Similarly, rear
surface perturbations can modify the sheath field, resulting in spatial non-uniformities of the proton beam or
suppression of the achievable peak energies. Tape drives with torsion control and monitoring to maintain a
high-quality tape surface have been designed and operated in experiments at Imperial College London. The
development of these targets continues with a view to the production of new, thinner tapes for improved ion
generation and the creation of ion species other than proton and carbon. This is an active area of R&D that will
continue with the development of LhARA.

High repetition-rate ion-beam diagnostics will also need to be developed. Such diagnostics will need to
measure both the energy spectrum and the spatial profile of the beams. Current methods are destructive and
are often limited to low-repetition rate. Passive detectors have not been demonstrated in the conditions that
will pertain at LhARA. Technologies being evaluated to address the issues raised by ion-source diagnostics for
LhARA are discussed in section 3.5.

3.2 Proton and ion capture

The use of an electron cloud as a focusing element for charged-particle beams was first proposed by Gabor in
1947 [59]. Gabor noted that a cloud of electrons uniformly distributed about the axis of a cylindrical vessel
would produce an ideal focusing force on a beam of positively charged particles. The focal length of such a
lens scales with the energy of the incoming particle beam allowing such lenses to provide strong focussing of
high-energy beams. Confinement conditions in the radial and axial directions can be determined [60]. In the
radial direction, where there is magnetic confinement and Brillouin flow, the number density of electrons, ne,
that can be contained is given by:

ne =
ε0B

2

2me
; (1)

where B is the magnetic field, me the mass of the electron, and ε0 the permittivity of free space. In the
longitudinal direction there is electrostatic confinement for which ne is given by:

ne =
4ε0VA
eR2

; (2)

where e the magnitude of the charge on the electron and R is the radius of the cylindrical anode which is held
at the positive potential VA. For the electron densities of interest for LhARA the required anode voltage is of
the order of 50 kV.

In the thin lens approximation, the focal length, f , of a Gabor lens can be expressed in terms of the magnetic
field and the particle velocity, vp [61]:

1

f
=

e2B2

4mempv2p
l ; (3)

where mp is the mass of the particles in the beam. The focal length of the Gabor lens is therefore proportional
to the kinetic energy or, equivalently, the square of the momentum, of the incoming beam. By comparison,
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Figure 2: Schematic diagram of a Penning-Malmberg trap of the type proposed for use in the Gabor lenses to
be used in LhARA. The solenoid coils, and the direction of current flow, are indicated by the red circles. The
confining electrostatic potential is provided using a central cylindrical anode and two cylindrical negative end
electrodes. The ion beam enters on-axis from the left and the electron cloud is indicated by the green shaded
area.

the focal length for a solenoid is proportional to the square of the momentum and that of a quadrupole is
proportional to momentum. At the particle energies relevant to LhARA the Gabor lens, or the solenoid, is
therefore preferred.

An expression for the focal length as a function of electron number density can be derived by substituting
equation (1) into equation (3) to give:

1

f
=
e2ne
4ε0U

l ; (4)

where U = 1
2mpv

2
p is the kinetic energy of the particle beam. The focal length of the Gabor lens is inversely

proportional to the number density of electrons trapped in the cloud. The focal lengths desired to capture
the proton and ion beams at LhARA have been chosen such that the required electron number densities are
conservative and lie within the range covered in published experiments.

For a given focal length, the magnetic field required in the Gabor lens is reduced compared to that of a
solenoid that would give equivalent focusing. In the non-relativistic approximation the relationship between
the magnetic field in the Gabor lens, BGBL, and the equivalent solenoid, Bsol, is given by [60]:

BGPL = Bsol

√
Z
me

mion
; (5)

where mion is the mass of the ions being focused, and Z is the charge state of the ions. In the case of a proton
beam the reduction factor is 43. Thus, for example, where a 2 T superconducting solenoid would be required,
the magnetic field required for a Gabor lens would only be 47 mT. This means the cost of the solenoid for a
Gabor lens can be significantly lower than the cost for a solenoid of equivalent focusing strength.

The plasma-confinement system described above is commonly known as a ‘Penning trap’ and has found
wide application in many fields [62]. Variations on the Penning trap where axial apertures in the cathodes are
introduced, such as the Penning-Malmberg trap [63, 64] are attractive for beam-based applications due to the
excellent access provided to the plasma column, see figure 2.

Instability of the electron cloud is a concern in the experimental operation of Gabor lens; azimuthal beam
disruption due to the diocotron instability has been observed and described theoretically [65]. Theory indicates
that the diocotron instability is most problematic under well-defined geometric conditions. The reliable opera-
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tion of a Gabor lens in a regime free from this instability has yet to be demonstrated. Gabor lenses promise very
strong focusing, simple construction, and low magnetic field, all attractive features for LhARA. However, these
attractive features come at the cost of relatively high voltage operation ( >∼ 50 kV) and possible vulnerability to
instability.

With reliable operation of Gabor lenses as yet unproven, we plan a two-part experimental and theoretical
programme of research to prove Gabor-lens suitability. Initial work will include: theoretical investigation of
lens stability in a full 3D particle-in-cell code such as VSIM [66]; and the development of electron-density
diagnostics based on interferometric measurement of the refractive-index change. These activities will be
applied to a time-invariant electron cloud. A test Gabor lens will be constructed to allow validation of both the
simulation results and a new diagnostic using an alpha emitter as a proxy for the LhARA beam. In addition, the
initial investigation will include the design of an electron beam to fill the lens. This last objective will enable
the second part of the experimental project; the operation of the Gabor lens in short pulses. It is attractive
to match the timing of the establishment of the electron cloud within the Gabor lens to that of the beam and
thereby limit instability growth. The research project is time limited such that, should it not prove possible to
produce a suitable Gabor lens, there will remain time sufficient to procure conventional solenoids in their place.

3.3 Beam transport and delivery to the low-energy in vitro end station

Beam-transport from the laser-driven ion source and delivery to the low-energy in vitro end station is required
to deliver a uniform dose distribution at the cell layer. Beam losses must be minimised for radiation safety and
to maximise the dose that can be delivered in a single shot. The transport line has been designed to minimise
regions in which the beam is brought to a focus to reduce the impact of space-charge forces on the beam
phase-space. An optical solution was initially developed using Beamoptics [67] and MADX [68]. Accurate
estimation of the performance of the beam line requires the inclusion of space-charge forces and particle-matter
interactions. Therefore, performance estimation was performed using Monte Carlo particle-tracking from the
ion source to the end station. BDSIM [69], which is based on the Geant4 toolkit was used for the simulation
of energy deposition arising from beam interactions with the material in the accelerator and the end station.
GPT [70] was used for evaluating the full 3D impact of space-charge.

An idealised Gaussian beam was generated with a spot size of 4µm FWHM, an angular divergence of
50 mrad, 35 fs FWHM bunch length, and an energy spread of 1 × 10−6 MeV. The maximum estimated bunch
charge is 1 × 109 protons. The presence of a substantial electron flux produced from the laser target compen-
sates the high proton charge density in the vicinity of the ion-production point. Therefore, the first 5 cm of
beam propagation was simulated without space-charge. Beyond this, the proton beam will have separated from
the lower energy electrons sufficiently for space-charge to become a prominent effect and cause an emittance
growth. Therefore, a further 5 cm drift was simulated including space-charge forces. At a distance of 10 cm
from the ion source the beam is at the exit of the laser-target vessel. The kinematic distributions of ions in the
beam were stored at this point and passed to the relevant BDSIM and GPT simulations of the downstream beam
line.

The beam line, shown schematically in figure 3, is composed of five sections: beam capture; matching and
energy selection; beam shaping; vertical arc matching; and an abort line. The capture section uses two Gabor
lenses to minimise the transverse momentum of particles in the beam. Beyond the capture section, an RF cavity
permits control of the bunch length and manipulation of the longitudinal phase-space. A third Gabor lens then
focuses the bunch to a small spot size after which a second RF cavity is located to provide further longitudinal
phase-space manipulation. Two further Gabor lenses bring the beam parallel once more in preparation for the
vertical 90◦ arc. All Gabor lenses have an inner radius of 3.65 cm and an effective length of 0.857 m. All lenses
operate below the maximum cathode voltage of 65 kV.
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Figure 3: Beam transport for Stage 1 of LhARA visualised in BDSIM, showing five machine sections. The
capture section is composed of two Gabor lenses (orange cylinders). The matching and energy selection section
includes three Gabor lenses, two RF cavities (grey cylinders) and an octupole magnet (green disc). The beam
shaping and extraction section includes a second octupole and a collimator (black vertical bar). The vertical
matching arc directs the beam into the low-energy in vitro end station and is composed of two 45◦ dipoles and
six quadrupoles. The total length of this beam line is 17.255 m.

A parallel beam emerges from the final Gabor lens, providing significant flexibility for the inclusion of beam
shaping and extraction systems. Beam uniformity will be achieved using octupole magnets to provide third-
order focusing to perturb the first-order focusing from the Gabor lenses. Such schemes have been demonstrated
in a number of facilities [71–73]. A suitable position for the first octupole was identified to be after the final
Gabor lens where the beam is large; its effect on the beam is expected to be significant. Octupoles were
only modelled in BDSIM as GPT does not have a standard component with an octupolar field. The typical
rectangular transverse distribution resulting from octupolar focusing requires collimation to match the circular
aperture through which the beam enters the end station. A collimator is therefore positioned at the start of the
vertical arc. Further simulations are required to determine the optimum position of the second octupole and to
evaluate the performance of the octopoles. The switching dipole which directs the beam to the injection line of
the FFA in Stage 2 will be located between the second octupole and the collimator, requiring the octupole to be
ramped down for Stage 2 operation.

The vertical arc uses transparent optics in an achromat matching section to ensure that the first-order transfer
map through the arc is equivalent to the identity transformation and that any dispersive effects are cancelled. A
2 m drift tube is added after the arc to penetrate the concrete shielding of the end station floor and to bring the
beam to bench height. The abort line consists of a drift followed by a beam dump and requires the first vertical
dipole to ramp down, preventing charged-particle transportation to the end station.

The underlying physics of plasma-lens operation cannot be simulated in BDSIM or GPT, however it can be
approximated using solenoid magnets of equivalent strength. RF cavity fields were not simulated. 10 000 parti-
cles were simulated corresponding to the estimated maximum bunch charge of 1×109 protons. Figure 4 shows
excellent agreement between horizontal and vertical transverse beam sizes in BDSIM and MADX, verifying the
beam line’s performance in the absence of space-charge effects. Reasonable agreement between BDSIM and
GPT is also seen when space-charge forces are included in GPT. Emittance growth is observed prior to the first
solenoid, affecting the optical parameters throughout the machine. However, the resulting beam dimensions at
the cell layer of 1.38 cm horizontally and 1.47 cm vertically are not significantly different from the ideal beam
in BDSIM. Further adjustments of the Gabor lenses and arc-quadrupole strengths may compensate for this. The
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Figure 4: Horizontal (solid lines) and vertical (dashed lines) beam sizes through the in vitro beam transport,
simulated with space-charge in GPT (green), and without space-charge in MADX (red) and BDSIM (blue).

transmission efficiency of the beam line is approximately 100%.
The small bunch dimensions in both transverse planes at the focus after the third Gabor lens, where the energy

selection collimator will be placed, remains a concern if the effect of space-charge has been underestimated.
Similar bunch dimensions are achieved in the vertical arc, however, quadrupolar focusing is confined to a single
plane mitigating further emittance growth. Further tuning of the Gabor lens voltages in the capture section may
compensate space-charge effects, reducing the non-zero transverse momentum seen entering the vertical arc.

To investigate beam uniformity, BDSIM simulations with and without octupoles and collimation for beam
shaping were conducted. Both octupoles were arbitrarily set to a strength of K3 = 6000 with a magnetic length
of 0.1 m and pole-tip radius of 5 cm, which, for a 15 MeV beam corresponds to pole-tip field of 0.42 T. A 2 cm
thick iron collimator with a 40 mm diameter aperture was positioned 1.5 m downstream of the octupole. Fig-
ure 5 shows the beam phase-space and particle distributions at the end station for the transverse and longitudinal
axes with and without beam shaping. Without octupoles the spatial profile is Gaussian as expected, however,
beam uniformity is improved with octupoles and collimation. The total beam width is 3.58 cm horizontally and
3.46 cm vertically which is sufficient to irradiate one well in a six-well cell-culture plate. Further optimisation
is required to improve uniformity whilst optimising beam-line transmission, which is approximately 70% for
the results presented in figure 5. An aberration can be seen in both transverse planes with and without beam
shaping; this effect originates upstream of the octupoles in the solenoids, and persists through to the end station.
These aberrations are a concern, however, future simulation efforts will replace the solenoids with a full elec-
tromagnetic simulation of the Gabor lens. This change is likely to change the aberrations. The non-Gaussian
energy distribution without beam shaping is a result of space-charge forces at the ion source; the distribution
persists to the end station as no components which affect the longitudinal phase space were simulated. The
Gaussian distribution seen with beam shaping is due to collimation.

The proposed design is capable of delivering beams of the desired size to the in vitro end station. Space-
charge effects impact the beam-transport performance but it is believed that this can be mitigated with minor
adjustments to the Gabor lenses in the capture section. Initial studies indicate that a uniform beam can be
delivered with further optimisation of the octupoles and collimator.
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Figure 5: Beam phase space distributions at the end-station in the transverse plane, (X, Y ); X′ and Y′ give
the slope relative to the Z axis. The transverse phase space is shown in figures a and b for simulations without
octupolar focusing and collimation, with the kinetic energy distribution shown in c. The same phase space
distributions simulated with the effect of octupoles and collimation are in figures d, e, and f.

3.3.1 Alternative Design

To mitigate potential emittance growth from space-charge forces, an alternative beam line design was devel-
oped in which the final two Gabor lenses in the matching and energy selection section are replaced by four
quadrupoles, limiting any bunch focusing to one plane at a time. The resulting machine is reduced in length
to 15.439 m. Without space-charge effects, a beam sigma of 2.5 mm at the end station can be achieved. With
space-charge, emittance growth prior to the first solenoid is once again observed leading to an increased beam
size at the entrance of the first quadrupole, resulting in a spatially asymmetric and divergent beam at the end
station. It is believed that the space-charge effects can be compensated by applying the same Gabor-lens opti-
misation as in the baseline design and adjusting the quadrupole settings to deliver beam parameters similar to
those without achieved in the absence of space charge. The alternative design provides a solution that is more
resilient to space-charge effects than the baseline, however, only the lower bound on the desired beam size
has been achieved so far. Further optimisation is required not only to optimise optical performance but also to
optimise octupole settings and to determine whether a beam with the desired uniformity can be delivered to the
end station.

3.4 Post-acceleration and beam delivery to the in vitro and in vivo end stations

A fixed-field alternating-gradient accelerator (FFA), based on the spiral scaling principle [74–77], will be used
to accelerate the beam in LhARA Stage 2 to obtain energies greater than the 15 MeV protons and 4 MeV/u
carbon (C6+) ions delivered by the laser-driven source. FFAs have many advantages for both medical and ra-
diobiological applications such as: the capability to deliver high and variable dose; rapid cycling with repetition
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rates ranging from 10 Hz to 100 Hz or beyond; and the ability to deliver various beam energies without the use
of energy degraders. An FFA is relatively compact due to the use of combined function magnets, which lowers
the overall cost compared to conventional accelerators capable of delivering beams at a variety of energies such
as synchrotrons. Extraction can be both simple and efficient and it is possible for multiple extraction ports to be
provided. Furthermore, FFAs can accelerate multiple ion species, which is very important for radiobiological
experiments and typically very difficult to achieve with cyclotrons.

A typical FFA is able to increase the beam momentum by a factor of three, though a greater factor may be
achieved. For LhARA, this translates to a maximum proton-beam energy of 127 MeV from an injected beam
of 15 MeV. For carbon ions (C6+) with the same rigidity, a maximum energy of approximately 33.4 MeV/u can
be produced.

The energy at injection into the FFA determines the beam energy at extraction. The injection energy will
be changed by varying the focusing strengths in the Stage 1 beam line from the capture section through to the
extraction line and the FFA ring. This will allow the appropriate energy slice from the broad energy spectrum
produced at the laser-driven source to be captured and transported to the FFA. The FFA will then accelerate the
beam, acting as a three-fold momentum multiplier. This scheme simplifies the injection and extraction systems
since their geometry and location can be kept constant.

A second, ‘high-energy’, in vitro end station will be served by proton beams with a kinetic energy in the
range 15–127 MeV and carbon-ion beams with energies up to 33.4 MeV/u. The extraction line from the FFA
leads to a 90◦ vertical arc to send the beam to the high-energy in vitro end station. If the first dipole of the arc is
not energised, beam will be sent to the in vivo end station. The extraction line of the FFA includes a switching
dipole that will send the beam to the high-energy-beam dump if it is not energised. The detailed design of the
high-energy abort line, taking into account the requirement that stray radiation does not enter the end stations,
will be performed as part of the LhARA R&D programme.

3.4.1 Injection line

The settings of the Stage 1 beam line need to be adjusted to reduce the Twiss β function propagating through
the injection line to allow beam to be injected into the FFA ring. The optical parameters in the Stage 1 beam
line after adjustment are shown in figure 6. The beam is diverted by a switching dipole into the injection line
which transports the beam to the injection septum magnet. The injection line matches the Twiss β functions
in both transverse planes and the dispersion of the beam to the values dictated by the periodic conditions in
the FFA cell (figure 6). The presence of dispersion in the injection line allows a collimator to be installed for
momentum selection before injection. The beam is injected from the inside of the ring, which requires the
injection line to cross one of the straight sections between the FFA magnets, see figure 7.

3.4.2 FFA ring

The magnetic field, By, in the median plane of a scaling spiral FFA is given by [74–76]:

By = B0

[
R

R0

]k
F

(
θ − ln

[
R

R0

]
tan ζ

)
; (6)

where B0 is the magnetic field at radius R0, k is the field index, ζ corresponds to the spiral angle and F is
the ‘flutter function’. This field law defines a zero-chromaticity condition, which means the working point of
the machine is independent of energy up to field errors and alignment imperfections. This avoids crossing any
resonances, which would reduce the beam quality and may lead to beam loss.
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Figure 6: Twiss βx and βy functions and dispersion in the beam line consisting of the modified Stage 1 lattice
and the transfer line allowing injection of the beam into the FFA ring. S goes from the laser target to the exit
of the injection septum.

Figure 7: The layout of the injection line from the switching dipole to the injection septum together with the
FFA ring, some of its subsystems and the first part of the extraction line.
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Figure 8: Beam optics and tracking in the FFA. Twiss βh (blue), βv (purple) functions and dispersion (green)
in one lattice cell of the FFA ring (a). The working point of the FFA ring at (2.83, 1.22) on the tune diagram
(b). The results of the horizontal (c) and vertical (d) dynamical acceptance study in the FFA ring, where a 1 mm
offset is assumed in the vertical and horizontal planes respectively.

Table 2 gives the main design parameters of the FFA ring. The ring consists of ten symmetric cells each
containing a single combined-function spiral magnet. The choice of the number of cells is a compromise
between the size of the orbit excursion, which dictates the radial extent of the magnet, and the length of the
straight sections required to accommodate the injection and extraction systems.

The betatron functions and dispersion in one lattice cell at injection are shown in figure 8a. The tune diagram,
showing the position of the working point of the machine in relation to the main resonance lines, is shown in
figure 8b. Tracking studies were performed using a step-wise tracking code in which the magnetic field is
integrated using a Runge-Kutta algorithm [78]. The magnetic field in the median plane was obtained using
the ideal scaling law (equation 6) and using using Enge functions to give the fringe fields. The field out of
the median plane was obtained using Maxwell’s equations and a 6th-order Taylor expansion of the field. The
dynamic acceptance for 100 turns, shown for the horizontal and vertical planes in figures 8c and 8d respectively,
are significantly larger than the beam emittance. This statement holds even when the most pessimistic scenario,
in which the emittance is assumed to be ten times larger than nominal, is used. These results confirm that a
good machine working point has been chosen.

A full aperture, fast injection of the beam will be performed using a magnetic septum, installed on the
inside of the ring, followed by a kicker magnet situated in a consecutive lattice cell, as shown in figure 7.
The specifications of the injection system are dictated by the parameters of the beam at injection, which are
summarised for the nominal proton beam in table 3. The beam at injection has a relatively small emittance and
short bunch length, which limits the intensity accepted by the ring due to the space-charge effect. An intensity
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Table 3: Summary of the main parameters for the proton beam at the injection to the FFA ring. These
parameters correspond to the nominal (maximum) acceleration mode of operation.

Parameter Unit Value
Beam energy MeV 15
Total relative energy spread % ±2
Nominal physical RMS emittance (both planes) πm rad 4.1× 10−7

Incoherent space charge tune shift -0.8
Bunching factor 0.023
Total bunch length ns 8.1
Bunch intensity 109

of approximately 109 protons will be accepted by the ring assuming the nominal beam parameters. Space-
charge effects will be severe immediately after injection, but will quickly be reduced due to the debunching of
the beam. Fast extraction of the beam over the full aperture will be performed using a kicker magnet followed
by a magnetic septum installed in a consecutive lattice cell close to the extraction orbit.

Acceleration of the beam to 127 MeV will be done using an RF system operating at harmonic number h =

1 with an RF frequency range from 2.89 MHz to 6.48 MHz. The RF voltage required for 10 Hz operation
is 0.5 kV. However, at such a low voltage the energy acceptance at injection will be limited to ±0.7% so a
voltage of 4 kV is required to increase the energy acceptance to ±2%. This voltage can be achieved with one
cavity [79], two cavities are assumed to provide greater operational stability. Normal conducting spiral-scaling
FFA magnets, similar to the ones needed for LhARA, have been constructed successfully [77, 80] using either
distributed, individually-powered coils on a flat pole piece or using a conventional gap-shaping technique. For
the LhARA FFA, we propose a variation of the coil-dominated design recently proposed at the Rutherford
Appleton Laboratory in R&D studies for the upgrade of the ISIS neutron and muon source. In this case, the
nominal scaling field is achieved using a distribution of single-powered windings on a flat pole piece. The
parameter k can then be tuned using up to three additional independently-powered windings. The extent of
the fringe field across the radius of the magnet must be carefully controlled using a ‘field clamp’ to achieve
zero-chromaticity. An active clamp, in which additional windings are placed around one end of the magnet,
may be used to control the flutter function and thereby vary independently the vertical tune of the FFA ring.
The FFA is required to deliver beams over a range of energy; each energy requiring a particular setting for the
ring magnets. Therefore, a laminated magnet design may be required to reduce the time required to change the
field. The magnet gap of 4.7 cm given in table 2 is estimated assuming a flat-pole design for the magnet. The
details of the design will be addressed in as part of the LhARA R&D programme.

3.4.3 Extraction Line

Substantial margins in the beam parameters were assumed in the design of the extraction line from the FFA
due to uncertainties in the beam distributions originating from: the Stage 1 beam transport; the FFA injection
line; and potential distortions introduced by the presence of space-charge effects during acceleration in the
ring. Therefore, the beam emittance was allowed, pessimistically, to be as large as a factor of ten greater than
in the nominal value, which was derived assuming that the normalised emittance is conserved from the source,
through the Stage 1 beam line, and in the FFA ring. In the nominal case, the physical emittance of the beam
is affected by adiabatic damping only. Substantial flexibility in the optics of the extraction line is required, as
the extraction line must accommodate a wide spectrum of beam conditions to serve the in vitro and in vivo
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Table 4: Beam emittance values and target β values for different beam sizes for 40 MeV and 127 MeV beams.
The beam size is taken to be four times the sigma of the transverse beam distribution.

40 MeV protons 127 MeV protons 127 MeV protons
(Nominal) (Nominal) (Pessimistic)

RMS Emittance (εx, εy) [π mm mrad] 0.137 0.137 1.37
β [m] for a 1 mm spot size 0.46 0.46 0.039
β [m] for a 10 mm spot size 46 46 4.5
β [m] for a 30 mm spot size 410 410 40

end-stations.

Detailed studies were carried out for proton beams with kinetic energies of 40 MeV and 127 MeV. Table 4
gives the Twiss β values for different beam sizes for the 40 MeV and 127 MeV proton-beam scenarios assuming
a Gaussian beam distribution. The optics and geometric acceptance of the system is approximately the same for
the 40 MeV and 127 MeV beams. This justified the working hypothesis that beam emittance is approximately
the same for both beam energies. This assumption will be revised as soon as space-charge simulations for the
entire system are available.

The first two dipoles and four quadrupoles of the extraction line bend the beam coming from the extraction
septum of the FFA such that it is parallel to the low-energy beam line while ensuring that dispersion is closed.
Closing the dispersion is critical as off-momentum particles will follow trajectories different to those followed
by particles with the design momentum and therefore impact the size and shape of the beam downstream. The
second part of the extraction line consists of four quadrupoles which transport the beam either to the first dipole
of the vertical arc that serves the high-energy in vitro end station or to the in vivo end-station if this dipole is
not energised. These quadrupoles provide the flexibility required to produce the different beam sizes for the in
vitro end station as specified in table 4.

3.4.4 High-energy in vitro beam line

The high-energy in vitro beam line transports the beam from the exit of the extraction line and delivers it to
the high-energy in vitro end station. The 90◦ vertical bend is a scaled version of the low-energy vertical arc,
following the same design principles, and also consists of two bending dipole magnets and six quadrupole
magnets. To accommodate the higher beam energies, the lengths of the magnets were scaled in order to ensure
that peak magnetic fields were below the saturation limits of normal conducting magnets. The bending dipole
magnet lengths were increased to 1.2 m each and the quadrupole lengths were tripled to 0.3 m each. The overall
length of the arc then becomes 6 m, compared to 4.6 m for the low energy in vitro arc. This difference in arc
length means the high-energy in vitro arc finishes about 0.9 m higher than the low-energy one. This difference
can easily be accommodated by adjusting the final drift lengths.

The quadrupole strengths for the scaled high-energy in vitro arc were obtained using MAD-X and tracking
simulations using BDSIM show good agreement, see figure 9. The input beam distribution used in BDSIM was
assumed to be Gaussian with Twiss β = 46, which gives a beam size of about 10 mm. GPT simulations were
performed which show small discrepancies due to space-charge effects. It may be possible to compensate for
this by adjusting the strengths of the quadrupoles in the arc and the matching section in the extraction line.
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Figure 9: Comparison of MAD-X and BDSIM simulation of 40 MeV (left) and nominal 127 MeV (right)
proton beam passing through the high energy in vitro arc simulated with 104 particles (in BDSIM).

Figure 10: MAD-X and BDSIM simulations of the in vivo beam line for a 40 MeV proton beam (top row) and
a nominal 127 MeV proton beam (bottom row) with quadrupoles matched to βx,y = 0.46m (left), βx,y = 46m
(middle) and βx,y = 410m (right) for 104 particles.

3.4.5 In vivo beam line

If the first dipole of the high-energy in vitro arc is not energised then beam is sent to the in vivo end station.
From the end of the extraction line, 7.7 m of drift is necessary to clear the first bending dipole of the in vitro
arc, to provide space for the five RF cavities needed for longitudinal phase-space manipulation and to allow
space for diagnostic devices. Following this drift is a further 6.6 m of beam line that includes four quadrupoles,
each of length 0.4 m, which are used to perform the final focusing adjustments of the beam delivered to the in
vivo end station. A final 1.5 m drift at the end is reserved for scanning magnets to be installed to perform spot
scanning and to penetrate the shielding of the in vivo end station. In total the in vivo beam line is 15.6 m in
length.

The design is flexible in matching the various βx,y values given in table 4, but is not able to match the
smallest target value of βx,y = 0.039m for the pessimistic scenario, which is very challenging. To verify
that the optics design could provide the required beam sizes, simulations were performed with BDSIM using
an input Gaussian beam generated with the Twiss β values given in tables 4. Figure 10 shows the results of
simulations for a 40 MeV proton beam and a nominal emittance 127 MeV proton beam matched in order to
obtain beam sizes of 1 mm, 10 mm and 30 mm. GPT was used to investigate the effects of space-charge. These
simulations show discrepancies compared to the BDSIM simulations. These discrepancies can be compensated
for by adjusting the strengths of the quadrupoles in the matching section in the extraction line.
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3.5 Instrumentation

Commercial off-the-shelf (COTS) instrumentation will be used for Stages 1 and 2 of LhARA wherever possi-
ble. However, the characteristics of the beam (e.g. very high charge-per-bunch, low-to-moderate energy) will
require some custom solutions to be developed. The authors are developing two concepts, termed SciWire and
SmartPhantom, for the low- and high-energy in vitro end stations respectively. These detectors can also be used
for beam diagnostics. This new instrumentation may find application at other facilities. Instrumentation for the
detection of secondary particles arising from the interaction of the beam with tissue is not discussed here but is
an important area that will be studied in the future.

3.5.1 SciWire

For the Stage 1 beam, the maximum proton energy is 15 MeV. Shot-to-shot characterisation of the beam is es-
sential and requires the use of a very thin detector with a fast response. The SciWire [81] is being developed to
provide energy and intensity profile measurements for low-energy ion beams. A single SciWire plane consists
of two layers of 250µm square-section scintillating fibres, with the fibre directions in the two layers orthogonal
to each other. A series of back-to-back planes provides a homogeneous volume of scintillator. If there are
enough planes to stop the beam, the depth of penetration will allow the beam energy to be inferred. This is
obviously a destructive measurement so it is envisaged that this type of measurement would only be used when
experiments are not running. A single plane, however, can be used for 2D beam-profile measurements at the
same time that beam is delivered for experiments. Detection of the light from SciWire fibres may be by CMOS
camera, or using photodiodes. If the instrumentation is sufficiently fast, the SciWire can be used to derive
feedback signals for beam tuning.

3.5.2 SmartPhantom

To study in real time the dose profile of Stage 2 beams, the SmartPhantom [82] is being developed. This is a
water-filled phantom, which is instrumented with planes of scintillating fibres, by which to infer the dose dis-
tribution with distance. The detection elements of the SmartPhantom are 250µm diameter, round scintillating
fibres. Each fibre station consist of two planes of fibres, in which the fibre directions are orthogonal. Five fibre
stations are arranged in the phantom in front of the cell-culture flask. The fibres may be coupled to photodiodes,
or a CMOS camera. Simulations in GEANT4 are being used to develop analysis techniques by which to predict
the position of the Bragg peak shot-by-shot. The beam profile and dose delivered can then be calculated in real
time. The key emphasis is to be able to derive these parameters from shot-by-shot data, and not purely from
simulations.

3.5.3 Beam line Instrumentation

The instrumentation requirement begins with the Ti:Sapphire laser. The laser focal spot will be characterised
using a camera-based system and high-speed wavefront measurements [83] from COTS vendors.

For the Stage 1 beam line, beam position monitors (BPMs) will be needed for beam steering. Because of
the low beam energy, non-intercepting BPMs using capacitive pickup buttons will be used. Custom pickups
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will be needed to match the beam pipe geometry but COTS electronics are available. The beam current will be
monitored near the end of each beam line, using integrating current toroids (ICT), backed up with the option
of insertable multi-layer Faraday cups (MLFC) to give absolute beam current and energy measurements. Beam
profiles could be measured by SEM grids on both Stage 1 and Stage 2 beam lines. For Stage 1, these monitors
will be mounted on pneumatic actuators to avoid scattering. Each end station could be equipped with insertable
“pepper-pot” emittance monitors and a transverse deflection cavity with fluorescent screen could be provided
for bunch shape measurements.

The BPMs on the FFA will require pickup designs suitable for the unusual, wide and shallow, vacuum vessel.
The FFA at the KURNS facility in Kyoto is of a similar layout [84] and uses a kicker and capacitive pickup to
perform tune measurements in each transverse direction. A minimum of one BPM every second cell will be
used in the FFA so that the beam orbit can be measured. BPMs will also be required close to the injection and
extraction septa. The BPM system may be able to use COTS electronics, but the pickups will be based on the
KURNS design of multiple electrodes arranged across the vacuum vessel width.

The DAQ needs to be able to store calibration data and apply corrections in real time. It is necessary to be able
to find the beam centre from a profile, even when the profile may be non-Gaussian and possibly asymmetric.
FPGAs can be used to perform fast fitting and pattern recognition of beam profiles. The instrumentation will be
integrated with the accelerator control system to be able to provide fast feedback and adjustment of the beam
parameters in real time.

3.6 Biological end stations

In order to deliver a successful radiobiological research programme, high-end and fully equipped in vitro and in
vivo end-stations will be housed within the LhARA facility. The two in vitro end-stations (high and low energy)
will contain vertically-delivered beam lines which will be used for the irradiation of 2D monolayer and 3D-
cell systems (spheroids and patient-derived organoids) in culture. The beam line within the end-stations will
be housed in sealed units that will be directly sourced with appropriate gases (carbon dioxide and nitrogen),
allowing for the cells within culture plates to be incubated for a short time in stable conditions prior to and
during irradiation. This will also enable the chamber to act, where necessary, as a hypoxia unit (0.1%–5%
oxygen concentration). Furthermore, these sealed units will contain robotics to enable simple movement of the
numerous cell culture plates housed within to be placed into and taken away from the beam.

The in vitro end-stations will be located within a research laboratory equipped with up-to-date and state-of-
the-art facilities. This, coupled with two separate end-stations and multiple workspaces, will enable multiple
groups of researchers to perform productive and high-quality biological research. The laboratory will include
all the vital equipment for bench-top science, sample processing and analysis (e.g. refrigerated centrifuges
and light/fluorescent microscopes), along with the equipment required for contaminant-free cell culture (e.g.
humidified CO2 cell culture incubators, Class II biological safety cabinets), and for the storage of biological
samples and specimens (e.g. −20◦C and −80◦C freezers and fridges). The laboratory will also house an X-ray
irradiator (allowing direct RBE comparisons between conventional photon irradiation, and the proton and car-
bon ions delivered by the accelerator), hypoxia chamber (for long-term hypoxia studies), a robotic workstation
(handling and processing of large sample numbers, assisting in high-throughput screening experiments), and
an ultra-pure-water delivery system. These facilities will enable a myriad of biological end-points to be inves-
tigated in both normal- and tumour-cell models not only from routine clonogenic survival and growth assays,
but will expand significantly on more complex end-points (e.g. inflammation, angiogenesis, senescence and
autophagy) as these experiments are difficult to perform at current clinical research beams due to limited time
and facilities.

The in vivo end-station will be served with high-energy proton and carbon ions capable of penetrating deeper
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into tissues allowing the irradiation of whole animals. The ability to perform in vivo pre-clinical studies is vital
for the future effective translation of the research into human cancer patients where optimum treatment strate-
gies and reduction of side-effects can be defined. The in vivo end-station will allow the irradiation of a number
of small-animal models (e.g. xenograft mouse and rat models) which can further promote an examination of
particular ions on the appropriate biological end-points (e.g. tumour growth and normal tissue responses). The
end-station will contain a small-animal handling area which will allow for the anaesthetisation of animals prior
to irradiation. To enable the irradiation of small target volumes with a high level of precision and accuracy,
an image guidance system (e.g. computed tomography) will be available. The animals will subsequently be
placed in temperature-controlled holder tubes enabling the correct positioning of the relevant irradiation area
in front of the beam line. The beam size is sufficient to give flexibility in the different irradiation conditions, in
particular through passive scattering, pencil-beam scanning, and micro-beam irradiation, to be investigated at
both conventional and FLASH dose rates. It is envisaged that the animals will be taken off-site post-irradiation
to a nearby animal-holding facility for a follow-up period where biological measurements will be conducted.

3.7 Infrastructure and integration

The LhARA facility will encompass two floors of roughly 42 m in length and 18 m wide. The ground floor will
contain the laser, accelerator, and in vivo end station while the first floor will house the laboratory area and the
two in vitro end stations. The entire facility will require radiation protection in the form of concrete shielding,
which will delineate the facility into three principal areas: a radiation-controlled access area, a laser controlled
access area, and a laboratory limited-access area.

It is envisaged that LhARA will be built at an STFC National Laboratory or equivalent research institute
which has an established safety-management system and culture in place. At STFC, a comprehensive set of
Safety Codes has been developed to cover the hazards associated with working in such an environment. STFC
Safety Codes applicable to LhARA include: risk management, construction, biological safety, working with
lasers, working with time-varying electro-magnetic fields, management of ionising radiation, and electrical
safety. In practice at STFC, these codes are backed-up by the knowledge, skills and experience of staff, and
by appointed responsible persons such as Radiation Protection Advisors, Laser Responsible Officers, and Au-
thorising Engineers. In addition, STFC operates many facilities that encompass the same hazards as LhARA,
which, for lasers, include the Gemini Target Areas 2 and 3 [85] as well as the new EPAC (Extreme Photonics
Application Centre) [86] and for accelerators include FETS (Front End Test Stand) [87], and the ISIS Neutron
and Muon Source [88]. Safety systems and equipment will be required for LhARA, which will include Class
II biological safety cabinets for contaminant-free cell culture for in vitro radiobiological experiments.

For a facility such as LhARA, radiation safety is a primary concern and all work will be completed un-
der Regulation 8 of the Ionising Radiations Regulations 2017 (IRR17) [89], which requires a radiation risk
assessment before commencing a new work activity involving ionising radiation.

The infrastructure and integration of the LhARA facility will require R&D in four key areas: risk analysis
(project risks), risk assessments (safety risks), radiation simulations, and controls development. The risk anal-
ysis will cover all aspects of the facility, such as funding and resource availability, not just technical risks. A
safety-risk assessment will be performed to describe and control all potential safety risks in the facility. The
safety-risk assessment will, to a reasonable degree, identify all pieces of equipment that require safety mitiga-
tions and identify control measures that must be put in place. Coupled closely with the safety-risk assessment,
radiation simulations will be developed to characterise the radiation hazards in and around the LhARA facility.
The last area to require R&D will be the control systems. It is expected that the facility will use the Experimen-
tal Physics and Industrial Control System (EPICS), which can be further developed at this stage.
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Figure 11: Energy loss as a function of depth in the low-energy in vitro end station for three mono-energetic
proton energies: 10 MeV; 12 MeV; and 15 MeV. Each beam was simulated using 104 particles at the start of the
simulated end station.

4 Performance

The dose distributions delivered to the end stations were evaluated using BDSIM. Figure 11 shows the energy
lost by the beam as it enters the low-energy in vitro end station. The beam passes through the vacuum window,
a layer of scintillating fibre, and a 5 mm air gap. The beam then enters the cell-sample container, assumed to be
polystyrene, which supports a 30µm thick layer of cells, modelled using the Geant4 material “G4 SKIN ICRP”
[90]. The transverse momentum of protons in the beam was assumed to be Gaussian distributed, with a lateral
spread small enough for the beam to be fully contained within the required spot size of 3 cm. Figure 11 shows
that a proton beam with 10 MeV kinetic energy does not reach the cell. The Bragg peak of a 12 MeV proton
beam is located close to the cell layer, while a 15 MeV beam, the maximum energy specified for delivery to
the low-energy in vitro end station, has a Bragg peak located beyond the cell layer. LhARA’s ability to deliver
various energies will allow the investigation of radiobiological effects for irradiations using different parts of
the Bragg peak, effectively varying the LET across the sample.

The maximum dose that can be delivered was evaluated for a variety of beam energies. The dose was
estimated from simulations by calculating the energy deposited in a volume of water corresponding in size to
the sensitive volume of a PTW 23343 Markus ion chamber [91] placed at the position of the Bragg peak in
each case. The cylindrical chamber has a radius of 2.65 mm and a depth of 2 mm, giving a volume of about
4.4 × 10−8 m3. The total energy deposited within the chamber was recorded and converted into dose in units
of Gray.

For the low-energy in vitro end station the minimum spot size is specified to have a diameter of 10 mm, which
is larger than the area of the chamber. A single shot of 109 protons at 12 MeV with the minimum design spot
size deposits 3.1 × 10−4 J in the chamber volume, corresponding to a dose of 7.1Gy. For this simulation, the
thickness of the sample container was reduced so that the Bragg peak could be positioned within the chamber
volume. For the bunch length of 7.0 ns the maximum instantaneous dose rate is 1.0× 109 Gy/s and the average
dose rate is 71Gy/s assuming a repetition rate of 10 Hz. A single shot of 109 protons at 15 MeV deposits
5.6× 10−4 J in the chamber volume corresponding to a dose of 12.8Gy. This gives an instantaneous dose rate
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Table 5: Summary of expected maximum dose per pulse and dose rates that LhARA can deliver for minimum
beam sizes. These estimates are based on Monte Carlo simulations using a bunch length of 7 ns for 12 MeV
and 15 MeV proton beams, 41.5 ns for the 127 MeV proton beam and 75.2 ns for the 33.4 MeV/u carbon beam.
The average dose rate is based on the 10 Hz repetition rate of the laser source.

12 MeV Protons 15 MeV Protons 127 MeV Protons 33.4 MeV/u Carbon
Dose per pulse 7.1Gy 12.8Gy 15.6Gy 73.0Gy

Instantaneous dose rate 1.0× 109 Gy/s 1.8× 109 Gy/s 3.8× 108 Gy/s 9.7× 108 Gy/s
Average dose rate 71Gy/s 128Gy/s 156Gy/s 730Gy/s

of 1.8 × 109 Gy/s and an average dose rate of 128Gy/s assuming the same bunch length and repetition rate as
for the 12 MeV case.

For the high-energy in vitro end station a different setup was used for high energy proton beams. A similar
design to the low-energy end station was used but with the air gap increased from 5 mm to 5 cm and a water
phantom was placed at the end of the air gap instead of a cell culture plate. The water phantom used in the
simulation was based upon the PTC T41023 water phantom [92]. In addition, the smaller minimum design
beam size of 1 mm was used. A single shot of 109 protons at 127 MeV deposits 6.9× 10−4 J in the chamber at
the pristine Bragg peak depth corresponding to a dose of 15.6Gy, an instantaneous dose rate of 3.8× 108 Gy/s
and an average dose rate of 156Gy/s. The end-station design assumed for a 33.4 MeV/u carbon beam was the
same as that used for the low-energy in vitro end station due to the limited range in water of the carbon beam.
The intensity of the beam is a factor of 12 less than for protons in order to preserve the same strength of the
space-charge effect at injection into the FFA with the same beam parameters, as the incoherent space charge
tune shift is proportional to q2/A and inversely proportional to β2γ3, where q corresponds to the particle charge,
A its mass number and β, γ its relativistic parameters. A single pulse of 8.3× 107 ions, deposits 3.2× 10−3 J
at the depth of the pristine Bragg peak, leading to an instantaneous dose rate of 9.7× 108 Gy/s and a maximum
average dose rate of 730Gy/s.

The expected maximum dose rates are summarised in table 5. The instantaneous dose rates depend on the
bunch length which differs depending on the energies. For the low-energy in vitro line a 7 ns bunch length is
assumed here for all energies. While for the higher energies, a 127 MeV proton beam is delivered with a bunch
length of 41.5 ns, and a bunch length of 75.2 ns for a 33.4 MeV/u carbon beam. The same repetition rate of
10 Hz was used for all energies. The minimum beam size at the start of the end station for the 12 MeV and
15 MeV proton-beam simulations was 1 cm. A 1 mm beam size was used for the 127 MeV proton beam and
33.4 MeV/u carbon-ion beam simulations.

5 Conclusions

The initial conceptual design of LhARA, the Laser-hybrid Accelerator for Radiobiological Applications, has
been described and its performance evaluated in simulations that take into account the key features of the
facility. LhARA combines a laser-driven source to create a large flux of protons or light ions which are captured
and formed into a beam by strong-focusing plasma lenses thus evading the current space-charge limit on the
instantaneous dose rate that can be delivered. Acceleration, performed using an fixed-field alternating-gradient
accelerator, preserves the unique flexibility in the time, spectral, and spatial structure of the beam afforded by
the laser-driven source. The ability to trigger the laser pulse that initiates the production of protons or ions at
LhARA will allow the time structure of the beam to be varied to interrupt the chemical and biological pathways
that determine the biological response to ionising radiation. In addition, the almost parallel beam that LhARA
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will deliver can be varied to illuminate a circular area with a maximum diameter of between 1 cm and 3 cm
with an almost uniform dose or focused to a spot with diameter of ∼ 1mm. These features make LhARA the
ideally flexible tool for the systematic study of the radiobiology of proton and ion beams.

The laser-hybrid approach, therefore, will allow radiobiological studies and eventually radiotherapy to be
carried out in completely new regimes, delivering a variety of ion species in a broad range of time structures
and spatial configurations at instantaneous dose rates up to and potentially significantly beyond the current
ultra-high dose-rate “FLASH” regime. By demonstrating a triggerable system that incorporates dose-deposition
imaging in the fast feedback-and-control system, LhARA has the potential to lay the foundations for “best in
class” treatments to be made available to the many by reducing the footprint of future particle-beam therapy
systems.

LhARA has the potential to drive a change in clinical practice in the medium term by increasing the wealth
of radiobiological knowledge. This enhanced understanding in turn may be used to devise new approaches
to decrease radio-toxicity on normal tissue while maintaining, or even enhancing, the tumour-kill probability.
The radiobiology programme in combination with the demonstration in operation of the laser-hybrid technique
means that the execution of the LhARA programme has the potential to drive a step-change in the clinical
practice of proton- and ion-beam therapy.
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M. Rehwald, C. Rödel, H.-P. Schlenvoigt, W. Schumaker, U. Schramm, K. Zeil, and S. H. Glenzer,
“High repetition rate, multi-mev proton source from cryogenic hydrogen jets,” Applied Physics Letters
111 no. 11, (2017) 114102, https://doi.org/10.1063/1.4990487.
https://doi.org/10.1063/1.4990487.
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