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LhARA: Overview
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- Up to date full model
- Collimators including laser-target nozzle 2



LhARA Injection Line: Optical Verification
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Slight discrepancy w.r.t. original MADX Twiss parameters — known behaviour for low

energy, non-paraxial beams.

Minor tweaks required for beta and horizontal dispersion to match FFA cell conditions.
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Optical Performance with Space Charge Effects

- Simulation of an ideal beam.
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- BDSIM and GPT show excellent
agreement when not
considering space charge.

- Space charge was simulated
with 10000 particles
representing a total bunch
charge of 10° protons. An initial
emittance growth results in a
larger than nominal beam in
the capture section.
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- Asignificant impact on the downstream optical performance is observed, deviating from the design optics.

- Injection line beam focusing is limited to one dimension, we anticipate minimal impact from space charge effects
after the switching dipole.

- Further optimisation is needed to improve capture performance.



|deal Beam Phase Space — Stage 2 Injection Line
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- Stage 1 aberration also seen in the injection line
- Arises in the capture section solenoids & persist throughout the injection line

- Further investigation needed — source & potential mitigation if necessary
- Replacement of the solenoids by full electromagnetic simulations of the Gabor lenses.



Performance with a Laser-Target Sampled Beam
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Semi-realistic beam generated
from sampled output of laser-
target interaction simulation
(not collimated).

Particles outside of the 3.65cm
Gabor lens radius were not fully
focussed, resulting in a beam
halo and subsequent losses.
- Radius widened to study
downstream optical
performance.

- Broadly similar results obtained with BDSIM & GPT. Smaller emittance growth from space charge effects.
- Final dimensions do not match FFA cell requirements. Further optimisation is therefore required.

- Horizontal beam size jumps are due to a longer temporal profile in GPT snapshots capturing the bunch partially within

sector-bend fields.



ldeal Beam: Vacuum Nozzle Collimation
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|deal Collimated Beam: Optical Performance

- Collimated beam simulated
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- Early emittance growth due to space charge persists despite vacuum nozzle collimation.

- Optimization of the Gabor Lens strengths is needed.



Sampled Beam:
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Sampled beam collimated
using stage 1 operation
settings.

10000 particles in BDSIM

More of a discrepancy
observed, but the final beam
parameters are not too
dissimilar to the
uncollimated beam.



Sampled Collimated Beam: Transport Performance.
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- Emittance growth still observed
- Final dimensions do not match FFA cell requirements. Further optimisation is therefore required.

- Artificial GPT beam size jumping inhibiting the comparison at the point of FFA injection.

- Strategy needed to mitigate GPT simulation output control 10



Sampled Collimated Beam: Phase Space Distributions
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- Aberration still persists, but extends further in all dimensions

- The result of wider energy spread — momentum selection / cleaning is needed.
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Field Maps Vs Solenoids
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|ldeal Beam Sampled Beam

- Gabor Lens field maps generated for low beta injection configuration (TSD script updated with HT’s collimation fixes).
- ldeal & sampled collimated beams simulated with 10k particles.

- Small differences accrue resulting in observed discrepancies with the ideal beam.

- Better matching with the sampled beam. Vertical discrepancy arising around S=9m in subsides downstream.

- Matches solenoid well at the point of injection. FFA beam requirements are not met, however.
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Gabor Lens Field Map: Phase Space.
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Similar phase space observed to that of the solenoid beam line simulations

The aberration arises in both solenoid AND Gabor Lens fields.
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Laser-Target Sampled Beam: Losses & Energy Deposition
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- The uncollimated ideal beam was simulated in BDSIM with particle-matter interactions and the momentum selection collimator
aperture radius set to 0.5mm (the settings for stage 1 in vitro energy collimation).
- Heavy losses are observed with < 1% of the beam reaching the FFA septum magnet.
- Energy deposition is mostly restricted to within +/- 2m of the collimator.
- New collimator settings are required for energy selection through the injection line.
- Beam line transmission must be considered.
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Conclusions

Space charge causes early emittance growth resulting in neither the ideal or sampled beam matching the
FFA cell requirements.

- The Gabor lens strengths need optimising to mitigate this effect.

The vacuum nozzle collimation impacts the sampled beam performance.
- Stage 1 settings may be applicable to the injection line, but Gabor Lens optimisation is needed first.

The sampled beam’s phase space extends further due to the beam’s larger energy spread.
- Momentum selection / cleaning collimation studies are needed. Beam line transmission must be considered.

GPT simulation artefacts are impeding optics comparisons.
- Tweaking of the simulation output control is required.

Gabor Lens field maps match solenoid tracking well for the sampled beam.
- Phase space aberrations are still observed.
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