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The “Laser-hybrid Accelerator for Radiobiological Applications,” LhARA, is conceived

as a novel, flexible facility dedicated to the study of radiobiology. The technologies

demonstrated in LhARA, which have wide application, will be developed to allow

particle-beam therapy to be delivered in a new regimen, combining a variety of ion

species in a single treatment fraction and exploiting ultra-high dose rates. LhARA will

be a hybrid accelerator system in which laser interactions drive the creation of a large

flux of protons or light ions that are captured using a plasma (Gabor) lens and formed

into a beam. The laser-driven source allows protons and ions to be captured at energies

significantly above those that pertain in conventional facilities, thus evading the current

space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid

approach, therefore, will allow the radiobiology that determines the response of tissue

to ionizing radiation to be studied with protons and light ions using a wide variety

of time structures, spectral distributions, and spatial configurations at instantaneous

dose rates up to and significantly beyond the ultra-high dose-rate “FLASH” regime. It

is proposed that LhARA be developed in two stages. In the first stage, a programme

of in vitro radiobiology will be served with proton beams with energies between 10

and 15MeV. In stage two, the beam will be accelerated using a fixed-field alternating-

gradient accelerator (FFA). This will allow experiments to be carried out in vitro and in vivo
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with proton beam energies of up to 127MeV. In addition, ion beams with energies up

Q12

to 33.4MeV per nucleon will be available for in vitro and in vivo experiments. This paper

presents the conceptual design for LhARA and the R&D programme by which the LhARA

consortium seeks to establish the facility.

Q13
Keywords: radiobiology, novel acceleration, proton beam therapy (PBT), ion beam therapy, laser-driven

acceleration, plasma lens, fixed field alternating gradient acceleration

LAY SUMMARY

It is well-established that radiation therapy (RT) is an effectiveQ13

treatment for many types of cancer. Most treatments are
delivered by machines that accelerate electrons which are then
used to produce a beam of high-energy photons (X-rays) which
are directed at a tumor to kill cancer cells. However, healthy
tissue anywhere in the path of the photon beam is also irradiated
and so can be damaged. Modern X-ray therapy is able to
reduce this damage by using several beams at different angles.
Recent years have seen the use of a new type of machine
in which protons are accelerated to produce proton beams
(rather than photon beams) which are directed at a tumor.
These proton beams can be arranged to deposit almost all
of their energy in a small volume within a tumor so they
cause little damage to healthy tissue; a major advantage over
photon beams. But proton machines are large and expensive,
so there is a need for the development of proton machines
that are smaller, cheaper and more flexible in how they can
be used. The LhARA project is aimed at the development of
such proton machines using a new approach based on high
power lasers. Such new machines could also make it easier
to deliver the dose in very short high-intensity pulses and as
a group of micro-beams—exciting recent research has shown
that this brings improved effectiveness in killing cancer cells
while sparing healthy tissue. The technology to be proved in
LhARA should enable a course of RT to be delivered in days
rather than weeks. Scientifically, there is a need to understand
better the basic processes by which radiation interacts with
biological matter to kill cancer cells—the investigation of these
processes involves physics as well as biology. Thus the most
important aim of LhARA is to pursue this radiobiological
research in new regimens and from this to develop better
treatments. LhARA will also pursue technological research into
laser-hybrid accelerators.

1. INTRODUCTION

Cancer is the secondmost common cause of death globally [1]. In
2018, 18.1 million new cancer cases were diagnosed, 9.6 million
people died of cancer-related disease, and 43.8 million people
were living with cancer [2, 3]. It is estimated that 26.9 million
life-years could be saved in low- and middle-income countries if
radiotherapy capacity could be scaled up [4]. Novel techniques
incorporated in facilities that are at once robust, automated,
efficient, and cost-effective are required to deliver the required
scale-up in provision.

Radiation therapy (RT), a cornerstone of cancer treatment,
is used in over 50% of cancer patients [5]. The most frequently
used types of radiotherapy employ photon or electron beams
with MeV-scale energies. Proton and ion beams offer substantial
advantages over X-rays because the bulk of the beam energy is
deposited in the Bragg peak. This allows dose to be conformed
to the tumor while sparing healthy tissue and organs at risk.
The benefits of proton and ion-beam therapy (PBT) are widely
recognized. PBT today is routinely delivered in fractions of
∼ 2Gy per day over several weeks; each fraction being delivered
at a rate of <

∼5Gy/min deposited uniformly over the target
treatment volume. There is evidence of therapeutic benefit when
dose is delivered at ultra-high rate, >

∼40Gy/s, in “FLASH”
RT [6–10] or when multiple micro-beams with diameter <1mm
distributed over a grid with inter-beam spacing ∼ 3mm are
used [11–16]. However, the radiobiological mechanisms by
which the therapeutic benefit is generated using these approaches
are not entirely understood.

LhARA, the Laser-hybrid Accelerator for Radiobiological
Applications, is conceived as the new, highly flexible, source of
radiation that is required to explore the mechanisms by which
the biological response to ionizing radiation is determined by
the physical characteristics of the beam. A high-power pulsed
laser will be used to drive the creation of a large flux of protons
or ions which are captured and formed into a beam by strong-
focusing plasma lenses. The plasma (Gabor) lenses provide the
same focusing strength as high-field solenoids at a fraction of
the cost. Rapid acceleration will be performed using a fixed-
field alternating-gradient accelerator (FFA), thereby preserving
the unique flexibility in the time, energy, and spatial structure of
the beam afforded by the laser-driven source.

The LhARA facility may be developed in two stages. In the
first stage, the laser-driven beam, captured and transported using
plasma lenses and bending magnets, will serve a programme
of in vitro radiobiology with proton beams of energy of up to
15MeV. In stage two, the beam will be accelerated using an FFA.
This will allow experiments to be carried out in vitro and in
vivo with proton-beam energies of up to 127MeV. Ion beams
(including C6+) with energies up to 33.4MeV per nucleon will
also be available.

The laser pulse that initiates the production of protons or
ions at LhARA may be triggered at a repetition rate of up to
10Hz. The time structure of the beam may therefore be varied
to interrupt the chemical and biological pathways that determine
the biological response to ionizing radiation using 10 ns to
40 ns long proton or ion bunches repeated at intervals as small
as 100ms. The technologies chosen to capture, transport, and
accelerate the beam in LhARA ensure that this unique capability
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is preserved. The LhARA beam may be used to deliver an almost
uniform dose distribution over a circular area with a maximum
diameter of between 1 and 3 cm. Alternatively, the beam can be
focused to a spot with diameter of∼ 1mm.

The technologies that will be developed in LhARA have
the potential to make particle-beam therapy (PBT) available to
the many. The laser-hybrid approach will allow radiobiological
studies and eventually radiotherapy to be carried out in
completely new regimens, delivering a variety of ion species
in a broad range of time structures, spectral distributions, and
spatial configurations at instantaneous dose rates up to and
potentially significantly beyond the current ultra-high dose-rate
“FLASH” regime.

The “pre Conceptual Design Report” (pre-CDR) for
LhARA [17] lays the foundations for the development of full
conceptual and technical designs for the facility. The pre-CDR
also contains a description of the R&D that is required to
demonstrate the feasibility of critical LhARA components and
systems. This paper presents a summary of the contents of the
pre-CDR and lays out the vision of the LhARA consortium.

2. MOTIVATION

RT delivered using protons and ions, particle-beam therapy
(PBT), has the potential to overcome some of the fundamental
limitations of X-rays in cancer treatment through the targeted
delivery of the radiation dose [18]. The Particle Therapy Co-
Operative Group (PTCOG) currently lists 90 proton therapy
facilities and 12 carbon ion therapy facilities worldwide, located
predominantly in high-income countries [19]. Low- and middle-
income countries (LMIC) are relatively poorly served, indeed
nearly 70% of cancer patients globally do not have access to
RT [5].

2.1. The Case for a Systematic Study of the
Radiobiology of Proton and Ion Beams
The efficacy of proton and ion beams is characterized by
their relative biological effectiveness (RBE) in comparison to a
reference photon beam. The treatment-planning software that
is in use in the clinic today assumes an RBE value for protons
of 1.1 [20], meaning that, compared to X-rays, a lower dose
of protons is needed to produce the same therapeutic effect.
However, the rapid rise in the linear energy transfer (LET) at
the Bragg peak leads to significant uncertainties in the RBE.
Furthermore, it is known that RBE depends strongly on many
factors, including particle energy, dose, dose rate, the degree
of hypoxia, and tissue type [21]. Indeed, RBE values from 1.1
to over 3 have been derived from in vitro clonogenic-survival
assay data following proton irradiation of cultured cell lines
derived from different tumors [21–23]. RBE values of ∼ 3 are
accepted for high-LET carbon-ion irradiation, although higher
values have been reported [24]. RBE uncertainties for carbon and
other ion species are at least as large as they are for protons. These
uncertainties can lead to an incorrect estimation of the dose
required to treat a particular tumor. Overestimation can lead to

the damage of healthy tissue, while an underestimate can lead to
the tumor not being treated sufficiently for it to be eradicated.

The radio-therapeutic effect is caused largely by irreparable
damage to the cell’s DNA. The spectrum of DNA damage induced
within tumor cells changes in response to differences in RBE.
Larger RBE values, corresponding to higher LET, can increase
the frequency and complexity of DNA damage, in particular
causing DNA double-strand breaks (DSB) and complex DNA
damage (CDD), where multiple DNA lesions are induced in
close proximity [25, 26]. These DNA lesions are a major
contributor to radiation-induced cell death as they represent a
significant barrier to the cellular DNA-repair machinery [25].
However, a number of other biological factors contribute to
varying RBE in specific tumors, including the intrinsic radio-
sensitivity of the tissue, the level of oxygenation (hypoxia), the
growth and re-population characteristics, and the associated
tumormicro-environment. Consequently, there is still significant
uncertainty in the precise radiobiological mechanisms that arise
and how these mechanisms are affected by PBT. Detailed
systematic studies of the biophysical effects of the interaction
of protons and ions, under different physical conditions, with
different tissue types will provide important information on RBE
variation and could enable enhanced patient treatment-planning
algorithms to be devised. In addition, studies examining the
impact of combination therapies with PBT (e.g., targeting the
DNA damage response, hypoxia signaling mechanisms and also
the tumor micro-environment) are currently sparse; performing
these studies will therefore provide input vital to the development
of future personalized patient-therapy strategies using PBT.

2.2. The Case for Novel Beams for
Radiobiology
Extending the range of beam characteristics used in PBT delivery
may have significant therapeutic benefits. Delivery of RT at high
dose rates has led to noticeably reduced lung fibrosis in mice,
skin toxicity in mini-pigs, and reduced side-effects in cats with
nasal squamous-cell carcinoma, effects currently thought to be
mediated via local oxygen depletion [10, 27]. In fact, the first
patient with CD30+ T-cell cutaneous lymphoma has been safely
treated with electrons delivered at FLASH dose rates [28]. In
addition, therapeutic benefit has been demonstrated with the use
of multiple micro-beams [12]. However, there is still significant
uncertainty regarding the thresholds and the radiobiological
mechanisms underlying these effects. Extensive further study
both in vitro and in appropriate in vivomodels is required.

The LhARA facility will provide access to proton and
stable ion beams, provide a wide variety of temporal, spatial,
and spectral fractionation schemes, and deliver reliable and
reproducible biological data with fewer constraints than at
current clinical centers. LhARA will allow direct radiobiological
comparisons of the effects of different charged particles at
different energies and dose rates and enable unique mechanistic
studies (e.g., examination of the oxygen depletion hypothesis for
FLASH). In addition, LhARA will enable exhaustive evaluations
of RBE using more complex end-points (e.g., angiogenesis and
inflammation) in addition to routine survival measurements. The

Frontiers in Physics | www.frontiersin.org 3 September 2020 | Volume 8 | Article 567738

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

Aymar et al. Laser-hybrid Accelerator for Radiobiological Applications

ability to evaluate charged particles in conjunction with other
therapies (immunotherapy and chemotherapy) and to perform
in vivo experiments with the appropriate animal models is of
great importance given the current lack of evidence in these areas.
LhARA therefore has the potential to provide the radiobiological
data required to improve clinical practice.

The simulations of LhARA presented in this document have
been used to estimate the dose delivered as a function of energy
for protons and carbon ions. These simulations, described in
sections 3.3 and 3.4, show instantaneous particle rates of the
order of 109 particles per shot can be achieved, corresponding to
average dose rates of up to >

∼120Gy/s for protons and
>
∼700Gy/s

for carbon ions. These estimates are based on the baseline
specifications for LhARA.

2.3. Laser-Hybrid Beams for Radiobiology
and Clinical Application
High-power lasers have previously been proposed as an
alternative to conventional proton and carbon-ion facilities
for radiotherapy [29–31]. Laser-driven sources have also been
proposed as the basis for electron, proton and ion-beams
for radiobiology [32–39]. While a number of cell irradiation
experiments have been conducted with laser-accelerated ions
[36, 37, 40, 41], these have been limited in scope to a single-shot
configuration. More recent projects (e.g., A-SAIL [42], ELI [43],
and SCAPA [44]) will also investigate radiobiological effects using
laser-driven ion beams. These studies will also address various
technological issues [41, 45–48].

A beam line to provide ion-driven beams for multi-
disciplinary applications, ELIMAIA (ELI Multidisciplinary
Applications of laser-Ion Acceleration) is being brought into
operation at the Extreme Light Infrastructure (ELI) [49, 50]. This
beam line will include the “ELI MEDical and multidisciplinary
applications” (ELIMED) beam line which will allow
radiobiological investigations to be carried out [49, 51–55].
LhARA is distinguished from this facility in that the energy at
which the beam will be captured has been chosen to maximize
the shot-to-shot stability of the particle flux.

Protons and ions at conventional facilities are captured at
energies of several tens of keV. At such low energies, the
mutual repulsion of the particles, the “space-charge effect,” limits
the maximum instantaneous dose rate. The laser-driven source
allows protons and ions to be captured at significantly higher
energies, thus evading the current space-charge limit. Rapid
acceleration will be performed using a fixed-field alternating-
gradient accelerator (FFA), thereby preserving the unique
flexibility in the time, energy, and spatial structure of the
beam afforded by the laser-driven source. Modern lasers are
capable of delivering a Joule of energy in pulses that are tens
of femtoseconds in length at repetition rates of >

∼10Hz. Laser-
driven ion sources create beams that are highly divergent, have a
large energy spread, and an intensity that can vary by up to 25%
pulse-to-pulse [56]. These issues are addressed in the LhARA
conceptual design through the use of Gabor lenses to provide
strong focusing and to allow energy selection. In addition,

sophisticated instrumentation will be used in a fast feedback-and-
control system to ensure that the dose delivered is both accurate
and reproducible. This approach will allow multiple ion species,
from proton to carbon, to be produced from a single laser by
varying the target foil and particle-capture optics.

LhARA will prove the principle of the novel technologies
required for the development of future therapy facilities. The
legacy of the LhARA programme will therefore be: a unique
facility dedicated to the development of a deep understanding of
the radiobiology of proton and ion beams; and the demonstration
in operation of technologies that will allow PBT to be delivered in
completely new regimens.

3. THE LhARA FACILITY

The LhARA facility, shown schematically in Figure 1, has been
designed to serve two end stations for in vitro radiobiology and
one end station for in vivo studies. The principle components
of Stage 1 of the LhARA accelerator are: the laser-driven proton
and ion source; the matching and energy selection section; beam
delivery to the low-energy in vitro end station; and the low-
energy abort line. Stage 2 is formed by the injection line for the
fixed-field alternating-gradient accelerator (FFA); the FFA; the
extraction line; the high-energy abort line; beam delivery to the
high-energy in vitro end station; and the transfer line to the in
vivo end station. Proton beams with energies of between 12 and
15MeV will be delivered directly from the laser-driven source to
the low-energy in vitro end station via a transfer line. The high-
energy in vitro end station and the in vivo end station will be
served by proton beams with energy between 15 and 127MeV
and by ion beams, including C6+ with energies up to 33.4MeV/u.
The design parameters for the various components of LhARA are
given inTables 1, 2. The design of the LhARA facility is described
in the sections that follow.

3.1. Laser-Driven Proton and Ion Source
A novel solution for proton and ion acceleration is to use a
compact, flexible laser-driven source coupled to a state-of-the-
art beam-transport line. This allows an accelerating gradient
of >

∼10GV/m to be exploited at the laser-driven source. We
propose to operate in the laser-driven sheath-acceleration regime
[57–59] for ion generation. An intense, short laser pulse will be
focused onto a target. The intense electric field generated on
the front surface of the target accelerates the surface electrons,
driving them into the material. Electrons which gain sufficient
energy traverse the target, ionising the material as they go.
A strong space-charge electric field, the “sheath,” is created as
the accelerated electrons exit the rear surface of the target.
This field in turn accelerates protons and ions present as
contaminants on the surface. The sheath-acceleration scheme has
been shown to produce ion energies >40MeV/u at the highest
laser intensities [56]. The maximum proton energy (Ep) scales

with laser intensity (I) as, Ep ∝ I
1
2 . The laser required to deliver a

significant proton flux at 15MeV is commercially available.
The distribution of proton and ion energies observed in laser-

driven beams exhibits a sharp cut-off at the maximum energy
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FIGURE 1 | Schematic diagram of the LhARA beam lines. The particle flux from the laser-driven source is shown by the red arrow. The “Capture” section is followedQ7

Q6 by the “Matching and energy selection” sections, the beam is directed either into the 90◦ bend that takes it to the low-energy in vitro end station, toward the FFA

injection line, or to the low-energy beam dump. Post-acceleration is performed using the FFA, on extraction from which the beam is directed either to the high-energy

in vitro end station, the in vivo end station, or the high-energy beam dump. Gabor lenses are shown as orange cylinders, RF cavities as gray cylinders, octupole

magnets as green discs, collimators as dark-green bars, dipole magnets are shown in blue, quadrupole magnets are shown in red, beam dumps (black rectangles)

and kicker magnets are also shown.

and, historically, the flux of laser-accelerated ion beams has
varied significantly shot-to-shot. To reduce these variations, the
choice has been made to select particles from the plateau of
the two-temperature energy spectrum of the laser-accelerated
ion beam [60, 61]. This should enhance ion-beam stability and
allow reproducible measurements to be carried out at ultra-high
dose rates using a small number of fractions. To create the flux
required in the plateau region, it is proposed that a 100 TW
laser system is used. A number of commercial lasers are available
that are capable of delivering > 2.5 J in pulses of duration <

25 fs, at 10Hz with contrast better than 1010 : 1. Shot-to-shot
stability of < 1% is promised, an important feature for stable
ion-beam production.

3.1.1. Target
Key to the operation of this configuration is a system
that refreshes the target material at high repetition-rate in
a reproducible manner. A number of schemes have been
proposed for such studies, including high-pressure gases [62–
64], cryogenic hydrogen ribbons [65–67], liquid sheets [68], and
tape drives [69]. For LhARA, a tape drive based on the system
developed at Imperial College London is proposed [56]. This
system is capable of reliable operation at target thicknesses down
to 5µm, using aluminium or steel foils, and down to 18µmusing
plastic tapes. Such tape-drive targets can be operated at high
charge (up to 100 pC at 15± 1MeV, i.e., > 109 protons per shot)
and can deliver high-quality proton and ion fluxes at repetition
rates of up to 10Hz or greater.

The careful control of the tension of the tape in a tape-drive
target is critical for reproducible operation. The tape must be
stretched enough to flatten the surface, but not enough to cause
plastic deformations. Surface flatness is important for a number

of reasons. Rippling of the front surface modifies the laser
absorption dramatically; uncharacterised rippling canmake shot-
to-shot variations significant and unpredictable [69]. Similarly,
rear surface perturbations can modify the sheath field, resulting
in spatial non-uniformities of the proton beam or suppression
of the achievable peak energies. Tape drives with torsion control
and monitoring to maintain a high-quality tape surface have
been designed and operated in experiments at Imperial College
London. The development of these targets continues with a
view to the production of new, thinner tapes for improved ion
generation and the creation of ion species other than protons and
carbon. This is an active area of R&D that will continue with the
development of LhARA.

3.2. Proton and Ion Capture
The use of an electron cloud as a focusing element for charged-
particle beams was first proposed by Gabor [70]. The electron
cloud is confined within the lens using a long cylindrical anode
placed within a uniform solenoid field (see Figure 2). Such a
configuration is commonly known as a “Penning trap” and
has found wide application in many fields [71]. Variations on
the Penning trap where axial apertures in the cathodes are
introduced, such as the Penning-Malmberg trap [72, 73] are
attractive for beam-based applications due to the excellent access
provided to the plasma column.

The focal length of a Gabor lens of length l is given in terms of
the electron number density by:

1

f
=

e2ne

4ǫ0U
l ; (1)

where e is the magnitude of the electric charge of the electron, ne
is the number density of the electrons confined within the lens,
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TABLE 1 | Design parameters of the components of the LhARA facility.Q7

Parameter Value or

range

Unit

Laser driven proton and ion source

Laser power 100 TW

Laser energy 2.5 J

Laser pulse length 25 fs

Laser rep. rate 10 Hz

Required maximum proton energy 15 MeV

Proton and ion capture

Beam divergence to be captured 50 mrad

Gabor lens effective length 0.857 m

Gabor lens length (end-flange to end-flange) 1.157 m

Gabor lens cathode radius 0.0365 m

Gabor lens maximum voltage 65 kV

Number of Gabor lenses 2

Alternative technology: solenoid length 1.157 m

Alternative technology: solenoid max field strength 1.3 T

Stage 1 beam transport: matching and energy selection, beam delivery

to low-energy end station

Number of Gabor lenses 3

Number of re–bunching cavities 2

Number of collimators for energy selection 1

Arc bending angle 90 Degrees

Number of bending magnets 2

Number of quadrupoles in the arc 6

Alternative technology: solenoid length 1.157 m

Alternative technology: solenoid max field strength

(to serve the injection line to the Stage 2)

0.8 (1.4) T

The parameter table is provided in a number of sections. This section contains parameters

for the Laser-driven proton and ion source, the Proton and ion capture section, and the

Stage 1 beam transport section.

ǫ0 the permittivity of free space, and U the kinetic energy of the
particle beam. The desired focusing strength determines ne which
in turn allows the anode voltage and magnetic-field strength to
be calculated [74, 75]. The focal lengths required to capture the
proton and ion beams at LhARA have been chosen such that
the necessary electron number densities lie well within the range
achieved in published experiments.

For a given focal length, the magnetic field strength required
in the Gabor lens is smaller than that of a solenoid that would
give equivalent focusing. In the non-relativistic approximation,
the relationship between the magnetic field strength in the Gabor
lens, BGBL, and the equivalent solenoid, Bsol, is given by [75]:

BGPL = Bsol

√

Z
me

mp
; (2)

where Z is the charge state of the ions. In the case of a proton
beam, the reduction factor is 43. This means the cost of the
solenoid for a Gabor lens can be significantly lower than the cost
of a solenoid of equivalent focusing strength.

TABLE 2 | Design parameters of the components of the LhARA facility.

Parameter Value or

range

Unit

Stage 2 beam transport: FFA, transfer line, beam delivery to high-energy

end stations

Number of bending magnets in the injection line 7

Number of quadrupoles in the injection line 10

FFA: Machine type single spiral

scaling FFA

FFA: Extraction energy 15–127 MeV

FFA: Number of cells 10

FFA: Orbit Rmin 2.92 m

FFA: Orbit Rmax 3.48 m

FFA: Orbit excursion 0.56 m

FFA: External R 4 m

FFA: Number of RF cavities 2

FFA: RF frequency 1.46–6.48 MHz

FFA: harmonic number 1, 2 or 4

FFA: RF voltage (for 2 cavities) 4 kV

FFA: spiral angle 48.7 Degrees

FFA: Max B field 1.4 T

FFA: k 5.33

FFA: Magnet packing factor 0.34

FFA: Magnet opening angle 12.24 degrees

FFA: Magnet gap 0.047 m

FFA: Ring tune (x,y) (2.83,1.22)

FFA: γT 2.516

FFA: Number of kickers 2

FFA: Number of septa 2

Number of bending magnets in the extraction line 2

Number of quadrupoles in the extraction line 8

Vertical arc bending angle 90 Degrees

Number of bending magnets in the vertical arc 2

Number of quadrupoles in the vertical arc 6

Number of cavities for longitudinal phase space

manipulation

5

Number of quadrupoles in the in vivo beam line 4

In vitro biological end stations

Maximum input beam diameter 1–3 cm

Beam energy spread (full width) Low-energy

end station:

≤4

%

High-energy

end station:

≤1

%

Input beam uniformity <5 %

Scintillating fiber layer thickness 0.25 mm

Air gap length 5 mm

Cell culture plate thickness 1.3 mm

Cell layer thickness 0.03 mm

Number of end stations 2

In vivo biological end station

Maximum input beam diameter 1–3 cm

(Continued)
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TABLE 2 | Continued

Parameter Value or

range

Unit

Beam energy spread (full width) ≤1 %

Input beam uniformity <5 %

Beam options Spot-

scanning,

passive

scattering,

micro-beam

The parameter table is provided in a number of sections. This section contains parameters

for the Stage 2 beam transport and the in vitro and in vivo end stations.

Instability of the electron cloud is a concern in the
experimental operation of a Gabor lens; azimuthal beam
disruption due to the diocotron instability has been observed and
described theoretically [76]. Theory indicates that the diocotron
instability is most problematic under well-defined geometric
conditions. The reliable operation of a Gabor lens in a regime
free from this instability has yet to be demonstrated. Gabor
lenses promise very strong focusing, simple construction, and
low magnetic field, all attractive features for LhARA. However,
these attractive features come at the cost of relatively high voltage
operation ( >

∼50 kV) and possible vulnerability to instability.
With reliable operation of Gabor lenses as yet unproven,

we plan a two-part experimental and theoretical programme
of research to investigate their Gabor suitability. Initial work
will include: the theoretical study of lens stability using
a full 3D particle-in-cell code, such as VSIM [77]; and
the development of electron-density diagnostics based on
interferometric measurement of the resulting refractive-index
change. A test Gabor lens will be constructed to allow validation
of both the simulation results and a new diagnostic tool using an
alpha emitter as a proxy for the LhARA beam. In addition, the
initial investigation will include the design of an injection system
to fill the lens with the required electron cloud. Should it prove
impossible to produce a suitable Gabor lens, it will be necessary to
use high-field solenoids to produce the equivalent focusing effect.

3.3. Beam Transport and Delivery to the
Low-Energy in vitro End Station
The beam transport line to the low-energy in vitro end station
must produce a uniform dose distribution at the cell layer. Beam
losses must be minimized for radiation safety and to maximize
the dose that can be delivered in a single shot. The transport
line has been designed to minimize regions in which the beam
is brought to a focus to reduce the impact of space-charge
forces on the beam phase-space. An optical solution was initially
developed using Beamoptics [78] and MADX [79]. Accurate
estimation of the performance of the beam line requires the
inclusion of space-charge forces and particle-matter interactions.
Performance estimation was therefore performed using Monte
Carlo particle-tracking from the ion source to the end station.
BDSIM [80], which is based on the GEANT4 toolkit, was used
for the simulation of energy deposition arising from beam

FIGURE 2 | Schematic diagram of a Penning-Malmberg trap of the type

proposed for use in the Gabor lenses to be used in LhARA. The solenoid coils,

and the direction of current flow, are indicated by the red circles (the central

dots indicate current emerging from the picture, crosses current entering it).

The confining electrostatic potential is provided using a central cylindrical

anode and two cylindrical negative end electrodes. The ion beam enters

on-axis from the left and the electron cloud is indicated by the green shaded

area.

interactions with the material in the accelerator and the end
station. GPT [81] was used for evaluating the full 3D impact of
space-charge effects.

An idealized Gaussian beam was generated with a spot size of
4µm FWHM, an angular divergence of 50mrad, 35 fs FWHM
bunch length, and an energy spread of 1 × 10−6MeV. The
maximum estimated bunch charge is 1 × 109 protons. The
presence of a substantial electron flux produced from the laser
target compensates the high proton charge density in the vicinity
of the ion-production point. To approximate the partial space-
charge compensation in this region, it was assumed that co-
propagating electrons would fully compensate the space-charge
forces over the first 5 cm of beam propagation. Beyond this,
the proton beam was assumed to have separated from the co-
propagating electrons sufficiently for space-charge to become
a significant effect and cause emittance growth. Therefore, a
further 5 cm drift was simulated including space-charge forces.
At a distance of 10 cm from the ion source, the beam is at the
exit of the laser-target vessel. The kinematic distributions of ions
in the beam were stored at this point and passed to the relevant
BDSIM and GPT simulations of the downstream beam line.

The Stage 1 beam line, shown schematically in Figure 3, is
composed of five sections: beam capture; matching and energy
selection; beam shaping; vertical arc matching; and an abort
line. The capture section uses two Gabor lenses to minimize
the transverse momentum of particles in the beam. Beyond the
capture section, an RF cavity permits control of the bunch length
and manipulation of the longitudinal phase-space. A third Gabor
lens then focuses the bunch to a small spot size after which a
second RF cavity is located to provide further longitudinal phase-
space manipulation. Two further Gabor lenses ensure the beam is
again parallel before it enters the vertical 90◦ arc. All Gabor lenses
have an inner radius of 3.65 cm and an effective length of 0.857m.
All lenses operate at a cathode voltage of <65 kV.
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FIGURE 3 | Beam transport for Stage 1 of LhARA visualized in BDSIM, showing five machine sections. The capture section is composed of two Gabor lenses (orange

cylinders). The matching and energy selection section includes three Gabor lenses, two RF cavities (gray cylinders) and an octupole magnet (green disc). The beam

shaping and extraction section includes a second octupole and a collimator (vertical dark-green bar). The vertical matching arc directs the beam into the low-energy in

vitro end station and is composed of two 45◦ dipoles (blue and brown) and six quadrupoles (red). The total length of this beam line is 17.3m.

The parallel beam that emerges from the final Gabor lens,
provides significant flexibility for the inclusion of beam shaping
and extraction systems. Beam uniformity will be achieved using
octupole magnets to provide third-order focusing to perturb the
first-order focusing of the Gabor lenses. Such schemes have been
demonstrated in magnetic lattices in a number of facilities [82–
84]. A suitable position for the first octupole was identified to be
after the final Gabor lens where the beam is large; its effect on the
beam is expected to be significant. Octupoles were only modeled
in BDSIM, as GPT does not have a standard component with
an octupolar field. The typical rectangular transverse distribution
resulting from octupolar focusing requires collimation to match
the circular aperture through which the beam enters the end
station. A collimator is therefore positioned at the start of the
vertical arc. Further simulations are required to determine the
optimum position of the second octupole and to evaluate the
performance of the octopoles. The switching dipole which directs
the beam to the injection line of the FFA in Stage 2 will be located
between the second octupole and the collimator, requiring the
octupole to be ramped down for Stage 2 operation.

The vertical arc uses transparent optics in an achromat
matching section to ensure that the first-order transfer map
through the arc is equivalent to the identity transformation and
that any dispersive effects are canceled. A 2m drift tube is added
after the arc to penetrate the concrete shielding of the end station
floor and to bring the beam to bench height. The abort line
consists of a drift space followed by a beam dump. Ramping down
the first vertical dipole causes the beam to enter the dump and
prevents particle transportation to the end station.

The underlying physics of plasma-lens operation cannot be
simulated in BDSIM or GPT. It can, however, be approximated
using solenoid magnets of equivalent strength. RF cavity fields
were not simulated.

To produce the results shown here, 10,000 particles were
simulated, corresponding to the estimated maximum bunch
charge of 1 × 109 protons. Figure 4 shows excellent agreement
between horizontal and vertical transverse beam sizes in BDSIM
and MADX, verifying the beam line’s performance in the
absence of space-charge effects. Reasonable agreement between
BDSIM and GPT is also seen when space-charge forces are
included in GPT. Emittance growth is observed prior to the
first solenoid, affecting the optical parameters throughout the
machine. However, the resulting beam dimensions at the cell
layer of 1.38 cm horizontally and 1.47 cm vertically are not
significantly different from those in BDSIM. If needed, further
adjustments of the Gabor lens and arc-quadrupole strengths
may compensate for any space-charge effects. The transmission
efficiency of the beam line is∼100%.

The small bunch dimensions in both transverse planes
at the focus after the third Gabor lens, where the energy
selection collimator will be placed, could be of concern if the
effect of space-charge has been underestimated. Similar bunch
dimensions are achieved in the vertical arc. Here, however,
quadrupolar focusing is confined to a single plane to mitigate
possible further emittance growth.

To investigate beam uniformity, BDSIM simulations with
and without octupoles and collimation for beam shaping were
conducted. Each octopole was assumed to have a magnetic length
of 0.1m and pole-tip radius of 5 cm. The strength parameter, k3,
of each octupole was arbitrarily set to 6,000. A 2 cm thick iron
collimator with a 40mm diameter aperture was positioned 1.5m
downstream of the octupole. Figure 5 shows the beam phase-
space and particle distributions at the Stage 1 end station for the
transverse and longitudinal axes with and without beam shaping.
Without octupoles, the spatial profile is Gaussian, as expected.
Inclusion of the octupoles and collimation system improves beam

Frontiers in Physics | www.frontiersin.org 8 September 2020 | Volume 8 | Article 567738

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

Aymar et al. Laser-hybrid Accelerator for Radiobiological Applications

FIGURE 4 | Horizontal (solid lines) and vertical (dashed lines) beam sizes through the in vitro beam transport, simulated including space-charge effects in GPT (green),

and without space-charge in MADX (red) and BDSIM (blue).

uniformity. The total beam width is 3.58 cm horizontally and
3.46 cm vertically, which is sufficient to irradiate one well in a
six-well cell-culture plate. Further optimization is required to
improve uniformity whilst optimizing beam-line transmission,
which is∼70% for the results presented in Figure 5.

An aberration can be seen in both transverse planes with
and without beam shaping. This effect originates upstream of
the octupoles in the solenoids used to approximate the Gabor
lenses, and persists to the end station. The aberration is a concern,
but is likely to change when the solenoids are replaced by full
electromagnetic simulation of the Gabor lenses, at which point
it will be further investigated.

The non-Gaussian energy distribution without beam shaping
is a result of space-charge forces at the ion source; the distribution
persists to the end station as no components which affect
the longitudinal phase space were simulated. The Gaussian
distribution seen with beam shaping reflects the effects of the
collimation.

The proposed design is capable of delivering beams of the
desired size to the in vitro end station. Space-charge effects affect
the beam-transport performance but it is believed that these
can be mitigated with minor adjustments to the Gabor lenses
in the capture section. Initial studies indicate that a uniform
beam can be delivered with further optimization of the octupoles
and collimator.

3.3.1. Alternative Design
Tomitigate potential emittance growth from space-charge forces,
an alternative beam line design was developed in which the final
two Gabor lenses in the matching and energy selection section
are replaced by four quadrupoles, limiting any bunch focusing to

one plane at a time. The resulting machine is reduced in length
to 15.4m. Without space-charge effects, a beam width of 2.5mm
at the end station can be achieved. With space-charge, emittance
growth prior to the first solenoid is once again observed leading
to an increased beam size at the entrance of the first quadrupole,
resulting in a spatially asymmetric and divergent beam at the
end station. It is believed that the space-charge effects can be
compensated by applying the same Gabor lens optimization as
in the baseline design and adjusting the quadrupole settings to
deliver beam parameters similar to those achieved in the absence
of space charge. The alternative design provides a solution that is
more resilient to space-charge effects than the baseline, however,
only the lower bound on the desired beam size has been achieved
so far. For this design, further optimization is required not only
to improve optical performance but also to optimize octupole
settings and to determine whether a beam with the desired
uniformity can be delivered to the end station.

3.4. Post-acceleration and Beam Delivery
to the in vitro and in vivo End Stations
A fixed-field alternating-gradient accelerator (FFA), based on the
spiral scaling principle [85–88], will be used to accelerate the
beam in LhARA Stage 2 to obtain energies greater than the
15MeV protons and 4MeV/u carbon (C6+) ions delivered by the
laser-driven source. FFAs have many advantages for both medical
and radiobiological Applications, such as: the capability to deliver
high and variable dose; rapid cycling with repetition rates ranging
from 10 to 100Hz or beyond; and the ability to deliver various
beam energies without the use of energy degraders. An FFA
is relatively compact due to the use of combined function
magnets, which lowers the overall cost compared to conventional
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FIGURE 5 | Beam phase space distributions at the end-station in the transverse plane, (X, Y ); X′ and Y′ give the slope relative to the Z axis. The transverse phase

space is shown in (A,B) for simulations without octupolar focusing and collimation, with the kinetic energy distribution shown in (C). The same phase space

distributions simulated with the effect of octupoles and collimation are in figures (D–F).

accelerators capable of delivering beams at a variety of energies
such as synchrotrons. Extraction can be both simple and efficient
and it is possible for multiple extraction ports to be provided.
Furthermore, FFAs can accelerate multiple ion species, which is
very important for radiobiological experiments and typically very
difficult to achieve with cyclotrons.

A typical FFA is able to increase the beam momentum by
a factor of three, though a greater factor may be achieved. For
LhARA, this translates to a maximum proton-beam energy of
127MeV from an injected beam of 15MeV. For carbon ions
(C6+) with the same rigidity, a maximum energy of∼33.4MeV/u
can be produced.

The energy at injection into the FFA determines the beam
energy at extraction. The injection energy will be changed by
varying the focusing strengths in the Stage 1 beam line from the
capture section through to the extraction line and the FFA ring.
Appropriate adjustments to the frequency and phase of the RF
in the FFA ring will also be made. This will allow the required
energy slice from the broad spectrum produced at the laser-
driven source to be captured and transported to the FFA. The
FFA will then accelerate the beam, acting as a 3-fold momentum
multiplier. This scheme simplifies the injection and extraction
systems since their geometry and location can be kept constant.

A second, “high-energy,” in vitro end station will be served by
proton beams with a kinetic energy in the range 15–127MeV
and carbon-ion beams with energies up to 33.4MeV/u. The
extraction line from the FFA leads to a 90◦ vertical arc to send the
beam to the high-energy in vitro end station. If the first dipole of

FIGURE 6 | Twiss βx and βy functions and dispersion in the beam line

consisting of the modified Stage 1 lattice and the transfer line allowing injection

of the beam into the FFA ring. The distance s runs from the laser target to the

exit of the injection septum.

the arc is not energized, the beam will be sent to the in vivo end
station. The extraction line of the FFA includes a switching dipole
that will send the beam to the high-energy-beam dump if it is
not energized. The detailed design of the high-energy abort line,

Frontiers in Physics | www.frontiersin.org 10 September 2020 | Volume 8 | Article 567738

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Aymar et al. Laser-hybrid Accelerator for Radiobiological Applications

FIGURE 7 | The layout of the injection line from the switching dipole to the injection septum together with the FFA ring, some of its subsystems and the first part of the

extraction line.

taking into account the requirement that stray radiation does not
enter the end stations, will be performed as part of the LhARA
R&D programme.

3.4.1. Injection Line
In order to inject the beam into the FFA, the settings of the Stage 1
beam line need to be adjusted to reduce the Twiss β function.
The required Stage 1 optical parameters are shown in Figure 6.
The beam is diverted by a switching dipole into the injection line
which transports the beam to the injection septum magnet. The
injection line matches the Twiss β functions in both transverse
planes and the dispersion of the beam to the values dictated by the
periodic conditions in the FFA cell (Figure 6). The presence of
dispersion in the injection line allows a collimator to be installed
for momentum selection before injection. The beam is injected
from the inside of the ring, which requires that the injection line
crosses one of the straight sections between the FFAmagnets (see
Figure 7).

3.4.2. FFA Ring
Themagnetic field, By, in the median plane of a scaling spiral FFA
is given by [85–87]:

By = B0

[

R

R0

]k

F

(

θ − ln

[

R

R0

]

tan ζ

)

; (3)

where B0 is the magnetic field at radius R0, k is the field
index, ζ corresponds to the spiral angle and F is the “flutter
function.” This field law defines a zero-chromaticity condition,
which means the working point of the machine is independent
of energy (up to field errors and alignment imperfections). This
avoids the need to cross any resonances, which would reduce the
beam quality and could lead to beam loss.

Table 2 gives the main design parameters of the FFA ring.
The ring consists of ten symmetric cells, each containing a single
combined-function spiral magnet. The choice of the number of
cells is a compromise between the size of the orbit excursion,
which dictates the radial extent of the magnet, and the length of
the straight sections required to accommodate the injection and
extraction systems.

The betatron functions and dispersion in one lattice cell at
injection are shown in Figure 8A. The tune diagram, showing the
position of the working point of the machine in relation to the
main resonance lines, is shown in Figure 8B. Tracking studies
were performed using a step-wise tracking code in which the
magnetic field is integrated using a Runge-Kutta algorithm [89].
The magnetic field in the median plane was obtained using the
ideal scaling law (Equation 3). Enge functions were used to give
the fringe fields. The field out of the median plane was obtained
using Maxwell’s equations and a 6th-order Taylor expansion
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FIGURE 8 | Beam optics and tracking in the FFA. Twiss βh (blue), βv (purple) functions, and dispersion (green) in one lattice cell of the FFA ring (A). The working point

of the FFA ring at (2.83, 1.22) on the tune diagram (B). The results of the horizontal (C) and vertical (D) dynamical acceptance study in the FFA ring, where a 1mm

offset is assumed in the vertical and horizontal planes, respectively.

of the field. The dynamic acceptance for 100 turns, shown for
the horizontal and vertical planes in Figures 8C,D, respectively,
is significantly larger than the beam emittance. This statement
holds even for the pessimistic scenario in which the emittance
is assumed to be ten times larger than nominal. These results
confirm that a good machine working point has been chosen.

A full aperture, fast injection of the beam will be performed
using a magnetic septum, installed on the inside of the ring,
followed by a kicker magnet situated in a consecutive lattice
cell, as shown in Figure 7. The specifications of the injection
system are dictated by the parameters of the beam at injection,
which are summarized for the nominal proton beam in Table 3.
The beam at injection has a relatively small emittance and
short bunch length, which limits the intensity accepted by the
ring due to the space-charge effect. An intensity of ∼ 109

protons will be accepted by the ring assuming the nominal beam
parameters. Space-charge effects will be severe immediately after
injection, but will quickly be reduced due to the debunching
of the beam. Fast extraction of the beam over the full aperture
will be performed using a kicker magnet followed by a magnetic

TABLE 3 | Summary of the main parameters for the proton beam at the injection

to the FFA ring.

Parameter Unit Value

Beam energy MeV 15

Total relative energy spread % ±2

Nominal physical RMS emittance (both planes) π mrad 4.1× 10−7

Incoherent space charge tune shift −0.8

Bunching factor 0.023

Total bunch length ns 8.1

Bunch intensity 109

These parameters correspond to the nominal (maximum) acceleration mode of operation.

septum installed in a consecutive lattice cell close to the
extraction orbit.

Acceleration of the beam to 127MeV will be done using an
RF system operating at harmonic number h = 1 with an RF
frequency range from 2.89 to 6.48MHz. The RF voltage required
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for 10Hz operation is 0.5 kV. However, at this relatively low
voltage the energy acceptance at injection is ±0.7%. Operating
with a voltage of 4 kV increases the energy acceptance to ±2%.
This voltage can be achieved with one cavity [90]. Here, two
cavities are proposed to provide greater operational stability.
Normal conducting spiral-scaling FFA magnets, similar to the
ones needed for LhARA, have been successfully constructed
[88, 91] using either distributed, individually-powered coils on a
flat pole piece or using a conventional gap-shaping technique. For
the LhARA FFA, we propose a variation of the coil-dominated
design recently proposed at the Rutherford Appleton Laboratory
in R&D studies for the upgrade of the ISIS neutron and muon
source. In this case, the nominal scaling field is achieved using
a distribution of single-powered windings on a flat pole piece.
The parameter k can then be tuned using up to three additional
independently-powered windings. The extent of the fringe field
across the radius of the magnet must be carefully controlled using
a “field clamp” to achieve zero chromaticity. An active clamp,
in which additional windings are placed around one end of the
magnet, may be used to control the flutter function and thereby
vary independently the vertical tune of the FFA ring. The FFA
is required to deliver beams over a range of energy; each energy
requiring a particular setting for the ring magnets. Therefore, a
laminated magnet design may be required to reduce the time
needed to change the field. The magnet gap of 4.7 cm given in
Table 2 is estimated assuming a flat-pole design for the magnet.

3.4.3. Extraction Line
Substantial margins in the beam parameters were assumed
in the design of the extraction line from the FFA due to
uncertainties in the beam distributions originating from the
Stage 1 beam transport, the FFA injection line, and potential
distortions introduced by the presence of space-charge effects
during acceleration in the ring. The beam emittance was
therefore allowed to be as large as a factor of 10 greater than
the nominal value, which was derived by assuming that the
normalized emittance is conserved from the source, through the
Stage 1 beam line, and in the FFA ring. In the nominal case, the
physical emittance of the beam is affected by adiabatic damping
only. Substantial flexibility in the optics of the extraction line
is required, as the extraction line must accommodate a wide
spectrum of beam conditions to serve the in vitro and in vivo
end-stations.

Detailed studies were carried out for proton beams with
kinetic energies of 40 and 127MeV. Table 4 gives the Twiss β

values for different beam sizes for the 40 and 127MeV proton-
beam energies assuming a Gaussian beam distribution. The
optics and geometric acceptance of the system is approximately
the same for the 40 and 127MeV beams, justifying the working
hypothesis that beam emittance is approximately the same for
both beam energies. This assumption will be revised as soon as
space-charge simulations for the entire system are available.

The first two dipoles and four quadrupoles of the extraction
line bend the beam coming from the extraction septum of
the FFA such that it is parallel to the low-energy beam
line while ensuring that dispersion is closed. Closing the
dispersion is critical, as off-momentum particles will follow

TABLE 4 | Beam emittance values and target β values for different beam sizes for

40 and 127MeV beams.

40MeV protons 127MeV protons 127MeV protons

(nominal) (nominal) (pessimistic)

RMS emittance (ǫx , ǫy )

[π mm mrad]

0.137 0.137 1.37

β [m] for a 1mm spot

size

0.46 0.46 0.039

β [m] for a 10mm spot

size

46 46 4.5

β [m] for a 30mm spot

size

410 410 40

The beam size is taken to be four times the sigma of the transverse beam distribution.

trajectories different to those followed by particles with the design
momentum and therefore impact the size and shape of the beam
downstream. The second part of the extraction line consists of
four quadrupoles which transport the beam either to the first
dipole of the vertical arc that serves the high-energy in vitro end
station or to the in vivo end station if this dipole is not energized.
These quadrupoles provide the flexibility required to produce the
different beam sizes for the in vitro end station, as specified in
Table 4.

3.4.4. High-Energy in vitro Beam Line
The high-energy in vitro beam line transports the beam from
the extraction line to the high-energy in vitro end station. The
90◦ vertical bend is a scaled version of the low-energy vertical
arc, following the same design principles, and also consists
of two bending dipole magnets and six quadrupole magnets.
To accommodate the higher beam energies, the lengths of the
magnets were scaled in order to ensure that peak magnetic fields
were below the saturation limits of normal conducting magnets.
The bending dipole magnet lengths were increased to 1.2m each
and the quadrupole lengths were tripled to 0.3m. The overall
length of the arc then becomes 6m, compared to 4.6m for the
low energy in vitro arc. This difference in arc length means the
high-energy in vitro arc finishes about 0.9m higher than the
low-energy one. This difference can easily be accommodated by
adjusting the final drift lengths.

The quadrupole strengths for the scaled high-energy in
vitro arc were obtained using MADX calculations, tracking
simulations using BDSIM show good agreement with these (see
Figure 9). The input beam distribution used in BDSIM was
assumed to be Gaussian with Twiss β = 46, which gives a beam
size of about 10mm. Small deviations from the BDSIM results
were observed in GPT simulations due to space-charge effects.

3.4.5. In vivo Beam Line
To facilitate efficient small-animal handling, the end station
dedicated to in vivo experiments will be been positioned adjacent
to the principle road access to the facility. If the first dipole of
the high-energy in vitro arc is not energized, the beam is sent
to the in vivo end station. From the end of the extraction line,
7.7m of drift is necessary to clear the first bending dipole of
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FIGURE 9 | Comparison of MADX and BDSIM simulation of 40MeV (left) and nominal 127MeV (right) proton beam passing through the high energy in vitro arc

simulated with 104 particles (in BDSIM).

the in vitro arc, to provide space for the five RF cavities needed
for longitudinal phase-space manipulation and to allow space
for diagnostic devices. Following this drift is a further 6.6m of
beam line that includes four quadrupoles, each of length 0.4m,
which are used to perform the final focusing adjustments of the
beam delivered to the in vivo end station. A final 1.5m drift
length is reserved for scanning magnets so spot scanning can be
performed and to allow for penetration of the shielding of the in
vivo end station. In total, the in vivo beam line is 15.6m in length.

The flexible design can match the various βx,y values given in
Table 4, but not the smallest target value of βx,y = 0.039m for the
pessimistic scenario, which is very challenging. To verify that the
optics design can provide the required beam sizes, simulations
were performed with BDSIM using an input Gaussian beam
generated with the Twiss β values given in Table 4. Figure 10
shows the results for a 40MeV proton beam and a nominal
emittance 127MeV proton beam matched in order to obtain
beam sizes of 1, 10, and 30mm.

3.5. Instrumentation
Commercial off-the-shelf (COTS) instrumentation will be used
for Stages 1 and 2 of LhARA wherever possible. However, the
characteristics of the beam (e.g., very high charge-per-bunch,
low-to-moderate energy) will require that some custom solutions
be developed. The authors are developing two concepts, termed
SciWire and SmartPhantom, for the low- and high-energy in
vitro end stations, respectively. These detectors can also be used
for beam diagnostics and may find application at other facilities.
Instrumentation for the detection of secondary particles arising
from the interaction of the beam with tissue is not discussed here
but is an important area that will be studied in the future.

3.5.1. SciWire
For the Stage 1 beam, the maximum proton energy is 15
MeV. Shot-to-shot characterization of the beam is essential and
requires the use of a very thin detector with a fast response.
The SciWire [92] is being developed to provide energy and
intensity profile measurements for low-energy ion beams. A
single SciWire plane consists of two layers of 250µm square-
section scintillating fibers, with the fiber directions in the two
layers orthogonal to each other. A series of back-to-back planes

provides a homogeneous volume of scintillator. If there are
enough planes to stop the beam, the depth of penetration will
allow the beam energy to be inferred. This is a destructive
measurement so would only be performed when experiments
are not running. A single plane, however, can be used for 2D
beam-profile measurements while the beam is being delivered
for experiments. Light from the SciWire fibers may be detected
using a CMOS camera or photodiodes. If the instrumentation
is sufficiently fast, the SciWire can be used to derive feedback
signals for beam tuning.

3.5.2. SmartPhantom
To study the dose profile of Stage 2 beams in real time, the
SmartPhantom [93] is being developed. This is a water-filled
phantom, instrumented with planes of scintillating fibers, used to
infer the dose distribution with distance. The detection elements
of the SmartPhantom are 250µm diameter, round scintillating
fibers. Each fiber station consists of two planes of fibers, in
which the fiber directions are orthogonal. Five fiber stations
are arranged in the phantom in front of the cell-culture flask.
The fibers may be coupled to photodiodes, or a CMOS camera.
Simulations in GEANT4 are being used to develop analysis
techniques to determine the position of the Bragg peak shot-by-
shot. The beam profile and dose delivered can then be calculated
in real time.

3.5.3. Beam Line Instrumentation
The requirement for instrumentation begins with the Ti:Sapphire
laser. The laser focal spot will be characterized using a camera-
based system and high-speed wavefront measurements [94] from
COTS vendors.

For the Stage 1 beam line, beam position monitors (BPMs)
will be needed for beam steering. Because of the low beam
energy, non-intercepting BPMs using capacitive pickup buttons
will be used. Custom pickups will be needed to match the beam
pipe geometry, but COTS electronics are available. The beam
current will be monitored near the end of each beam line, using
integrating current toroids (ICT), backed up with the option
of insertable multi-layer Faraday cups (MLFC) to give absolute
beam current and energy measurements. Beam profiles could
be measured by SEM grids on both Stage 1 and Stage 2 beam
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FIGURE 10 | MADX and BDSIM simulations of the in vivo beam line for a 40MeV proton beam (top row) and a nominal 127MeV proton beam (bottom row) with

quadrupoles matched to βx,y = 0.46m (left), βx,y = 46m (middle), and βx,y = 410m (right) for 104 particles.

lines. For Stage 1, these monitors will be mounted on pneumatic
actuators to avoid scattering. Each end station could be equipped
with insertable “pepper-pot” emittancemonitors and a transverse
deflection cavity with fluorescent screen could be provided for
bunch shape measurements.

The BPMs on the FFA will require pickup designs suitable
for the unusual, wide and shallow vacuum vessel. The FFA at
the KURNS facility in Kyoto has a similar layout [95] and uses
a kicker and capacitive pickup to perform tune measurements
in each transverse direction. A minimum of one BPM every
second cell will be used in the FFA so that the beam orbit can
be measured. BPMs will also be required close to the injection
and extraction septa. The BPM system may be able to use COTS
electronics, but the pickups will be based on the KURNS design
of multiple electrodes arranged across the vacuum vessel width.

The data acquisition system needs to be able to store
calibration data and apply corrections in real time. It is necessary
to be able to find the beam center from a profile, even when
the profile may be non-Gaussian and possibly asymmetric. Field
programmable gate arrays (FPGAs) can be used to perform
fast fitting and pattern recognition of beam profiles. The
instrumentation will be integrated with the accelerator control
system and will provide fast feedback and adjustment of the beam
parameters in real time.

3.6. Biological End Stations
In order to deliver a successful radiobiological research
programme, high-end and fully equipped in vitro and in vivo end-
stations will be housed within the LhARA facility. The two in
vitro end-stations (high and low energy) will contain vertically-
delivered beam lines which will be used for the irradiation of 2D
monolayer and 3D-cell systems (spheroids and patient-derived
organoids) in culture. The beam line within the end-stations
will be housed in sealed units that will be directly sourced with
appropriate gases (carbon dioxide and nitrogen), allowing for the
cells within culture plates to be incubated for a short time in
stable conditions prior to and during irradiation. This will also

enable the chamber to act, where necessary, as a hypoxia unit
(0.1–5% oxygen concentration). Furthermore, these sealed units
will contain robotics to enable the numerous cell culture plates
housed within to be placed into and taken out of the beam.

The in vitro end-stations will be located within a research
laboratory equipped with state-of-the-art facilities. The
laboratory will include all the necessary equipment for bench-
top science, sample processing and analysis (e.g., refrigerated
centrifuges and light/fluorescent microscopes), along with the
equipment required for contaminant-free cell culture (e.g.,
humidified CO2 cell culture incubators, Class II biological safety
cabinets), and for the storage of biological samples and specimens
(e.g., −20 and −80◦C freezers and fridges). The laboratory will
also house an X-ray irradiator (allowing direct RBE comparisons
between conventional photon irradiation, and the proton and
carbon ions delivered by the accelerator), a hypoxia chamber (for
long-term hypoxia studies), a robotic workstation (for handling
and processing of large sample numbers, aiding high-throughput
screening experiments), and an ultra-pure-water delivery system.
These facilities will enable a myriad of biological end-points to
be investigated in both normal- and tumor-cell models not only
from routine clonogenic survival and growth assays, but also
from significantly more complex end-points (e.g., inflammation,
angiogenesis, senescence, and autophagy).

The in vivo end-station will be served with high-energy
proton and carbon ions capable of penetrating deeper into
tissues allowing the irradiation of whole animals. The ability to
perform in vivo pre-clinical studies is vital for the future effective
translation of the research into human cancer patients where
optimum treatment strategies and the reduction of side-effects
are crucial. The in vivo end-station will allow the irradiation
of a number of small-animal models (e.g., xenograft mouse
and rat models) which can further promote an examination
of particular ions on the appropriate biological end-points
(e.g., tumor growth and normal tissue responses). The end-
station will contain a small-animal handling area which will
allow for the anaesthetization of animals prior to irradiation.
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To enable the irradiation of small target volumes with a high
level of precision and accuracy, an image guidance system
(e.g., computed tomography) will be available. The animals will
subsequently be placed in temperature-controlled holder tubes
enabling the correct positioning of the relevant irradiation area
in front of the beam line. The beam size is sufficient to give
flexibility in the different irradiation conditions, in particular
through passive scattering, pencil-beam scanning, and micro-
beam irradiation, to be investigated at both conventional and
FLASH dose rates. It is envisaged that the animals will be
taken off-site post-irradiation to a nearby animal-holding facility
for a follow-up period where biological measurements will
be conducted.

3.7. Infrastructure and Integration
The LhARA facility will encompass two floors of roughly 42m
in length and 18m wide. The ground floor will contain the
laser, accelerator, and in vivo end station while the first floor
will house the laboratory area and the two in vitro end stations.
The entire facility will require radiation protection in the form
of concrete shielding. There will be three principal areas: a
radiation controlled-access area, a laser controlled-access area,
and a laboratory limited-access area.

For a facility, such as LhARA, laser, radiation and biological
safety are primary concerns. It is envisaged that LhARA will
be built at a national laboratory or equivalent research institute
which has an established safety-management system and culture
in place.

The infrastructure and integration of the LhARA facility will
require R&D in four key areas: risk analysis (project risks), risk
assessments (safety risks), radiation simulations, and controls
development. The risk analysis will cover all aspects of the facility,
such as funding and resource availability, not just technical
risks. A safety-risk assessment will be performed to describe and
control all potential safety risks in the facility. The safety-risk
assessment will, to a reasonable degree, identify all pieces of
equipment that require safety mitigations and identify control
measures that must be put in place. Coupled closely with the
safety-risk assessment, radiation simulations will be developed
to characterize the radiation hazards in and around the LhARA
facility. The last area to require R&D will be the control
systems. It is expected that the facility will use the Experimental
Physics and Industrial Control System [96], which can be further
developed at this stage.

4. PERFORMANCE

The dose distributions delivered to the end stations were
evaluated using BDSIM. Figure 11 shows the energy lost by
the beam as it enters the low-energy in vitro end station. The
beam passes through the vacuum window, a layer of scintillating
fiber, and a 5mm air gap. The beam then enters the cell-
sample container, assumed to be polystyrene, which supports a
30µm thick layer of cells, modeled using the GEANT4 material
“G4_SKIN_ICRP” [97]. The transverse momentum of protons in
the beam was assumed to follow a Gaussian distribution, with a
lateral spread small enough for the beam to be fully contained

within the required spot size of 3 cm. Figure 11 shows that a
proton beam with 10MeV kinetic energy does not reach the cell
layer. The Bragg peak of a 12MeV proton beam is located close
to the cell layer, while a 15MeV beam, the maximum energy
specified for delivery to the low-energy in vitro end station, has
a Bragg peak located beyond the cell layer. LhARA’s ability to
deliver various beam energies will allow the investigation of the
radiobiological effects of irradiation using different parts of the
Bragg peak, effectively varying the LET across the sample. RF
cavities are placed in both the stage 1 and the stage 2 beam
lines to allow the manipulation of the energy of the bunch as a
function of time. This facility will allow the study of the impact of
a “spread-out Bragg peak” (SOBP).

The maximum dose that can be delivered was evaluated for a
variety of beam energies. In order for the dose to be reported in
units of Gray it is necessary to define the volume within which
the energy deposition is to be integrated. Therefore, the dose was
estimated from simulations by calculating the energy deposited in
a volume of water corresponding in size to the sensitive volume
of a PTW 23343 Markus ion chamber [98] placed at the position
of the Bragg peak in each case. This choice allows the doses and
dose-rates reported here to be compared to those of operating
facilities. The cylindrical sensitive volume of the ion chamber
has a radius of 2.65mm and a depth of 2mm, giving a volume
of about 4.4 × 10−8m3. The total energy deposited within the
chamber was recorded and converted into dose in units of Gray.

For the low-energy in vitro end station, theminimum spot size
has a diameter of 10mm, which is larger than the area of the
chamber. A single shot of 109 protons at 12MeV with this spot
size deposits 3.1× 10−4 J in the chamber volume, corresponding
to a dose of 7.1Gy. For this simulation, the thickness of the
sample container was reduced so that the Bragg peak could be
positioned within the chamber volume. For the bunch length of
7.0 ns, the maximum instantaneous dose rate is 1.0 × 109 Gy/s
and the average dose rate is 71Gy/s, assuming a repetition
rate of 10Hz. A single shot of 109 protons at 15MeV deposits
5.6 × 10−4 J in the chamber volume, corresponding to a dose of
12.8Gy. This gives an instantaneous dose rate of 1.8 × 109 Gy/s
and an average dose rate of 128Gy/s assuming the same bunch
length and repetition rate as for the 12MeV case.

For the high-energy in vitro end station, a similar design to the
low-energy end station was used, but the air gap was increased
from 5mm to 5 cm and a water phantom was placed at the end
of the air gap instead of a cell culture plate. The water phantom
used in the simulation was based upon the PTC T41023 water
phantom [99]. In addition, the smaller minimum design beam
size of 1mm was used. A single shot of 109 protons at 127MeV
deposits 6.9 × 10−4 J in the chamber at the pristine Bragg peak
depth, corresponding to a dose of 15.6Gy, an instantaneous dose
rate of 3.8 × 108 Gy/s and an average dose rate of 156Gy/s. The
end-station design assumed for a 33.4MeV/u carbon beam was
the same as that used for the low-energy in vitro end station due
to the limited range in water of the carbon beam. The intensity
of the beam is a factor of 12 less than that for protons in order to
preserve the same strength of the space-charge effect at injection
into the FFA with the same beam parameters, as the incoherent
space charge tune shift is proportional to q2/A and inversely
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FIGURE 11 | Energy loss as a function of depth in the low-energy in vitro end station for three mono-energetic proton energies: 10, 12, and 15MeV. Each beam was

simulated using 104 particles at the start of the end station. The material through which the beam passes is indicated above the figure. The entrance window is plotted

at a Depth value of 0m. The beam deposits energy in the beam window and the layer of scintillating fiber before passing through an air gap and entering the sample

container.

proportional to β2γ 3, where q is the particle charge, A its mass
number, and β and γ its relativistic parameters. A single pulse of
8.3 × 107 ions deposits 3.2 × 10−3 J at the depth of the pristine
Bragg peak, leading to an instantaneous dose rate of 9.7×108 Gy/s
and a maximum average dose rate of 730Gy/s.

The expectedmaximum dose rates are summarized inTable 5.
The instantaneous dose rates depend on the bunch length which
differs depending on the energies. For the low-energy in vitro line,
a 7 ns bunch length is assumed for all energies. For the higher
energies, a 127MeV proton beam is delivered with a bunch length
of 41.5 ns, and a bunch length of 75.2 ns for a 33.4MeV/u carbon
beam. The same repetition rate of 10Hz was used for all energies.
The minimum beam size at the start of the end station for the 12
and 15MeV proton-beam simulations was 1 cm. A 1mm beam
size was used for the 127MeV proton beam and 33.4MeV/u
carbon-ion beam simulations.

5. CONCLUSIONS

The initial conceptual design of LhARA, the Laser-hybrid
Accelerator for Radiobiological Applications, has been described
and its performance evaluated in simulations that take into
account the key features of the facility. LhARA uses a laser-
driven source to create a large flux of protons or light ions
which are captured and formed into a beam by strong-
focusing plasma lenses, thus evading prevalent space-charge
limits on the instantaneous dose rate that can be delivered.

Acceleration, performed using a fixed-field alternating-gradient
accelerator, preserves the unique flexibility in the time, spectral,
and spatial structure of the beam afforded by the laser-driven
source. The ability to trigger the laser pulse that initiates
the production of protons or ions at LhARA will allow the
time structure of the beam to be varied to interrupt the
chemical and biological pathways that determine the biological
response to ionizing radiation. The almost parallel beam that
LhARA will deliver can be varied to illuminate a circular
area with a maximum diameter of between 1 and 3 cm with
an almost uniform dose, or focused to a spot with diameter
of ∼ 1mm. These features will allow radiobiological studies
to be carried out in completely new regimens, delivering a
variety of ion species in a broad range of time structures and
spatial configurations at instantaneous dose rates up to and
potentially significantly beyond the current ultra-high dose-rate
“FLASH” regime.

The enhanced understanding these studies will provide, may
in turn result in new approaches to radiotherapy, decreasing
the radio-toxicity for normal tissue while maintaining or
enhancing the tumor-control probability. Further, by developing
a triggerable system that incorporates dose-deposition imaging
in a fast feedback-and-control system, in the long term LhARA
has the potential to remove the requirement for a large gantry
for proton and ion therapy, laying the foundations for “best in
class” treatments to be made available to the many by reducing
the footprint of future particle-beam therapy systems.
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TABLE 5 | Summary of expected maximum dose per pulse and dose rates that LhARA can deliver for minimum beam sizes.

12MeV protons 15MeV protons 127MeV protons 33.4MeV/u carbon

Dose per pulse 7.1Gy 12.8Gy 15.6Gy 73.0Gy

Instantaneous dose rate 1.0× 109 Gy/s 1.8× 109 Gy/s 3.8× 108 Gy/s 9.7× 108 Gy/s

Average dose rate 71Gy/s 128Gy/s 156Gy/s 730Gy/s

These estimates are based on Monte Carlo simulations using a bunch length of 7 ns for 12 and 15MeV proton beams, 41.5 ns for the 127MeV proton beam and 75.2 ns for the

33.4MeV/u carbon beam. The average dose rate is based on the 10Hz repetition rate of the laser source.

The radiobiology programme in combination with the
demonstration in operation of the laser-hybrid technique means
that the LhARA programme has the potential to drive a step-
change in the clinical practice of proton- and ion-beam therapy.
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